cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180028 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 3*x)/(1 - 6*x - 3*x^2).

This page as a plain text file.
%I A180028 #24 Sep 08 2022 08:45:54
%S A180028 1,9,57,369,2385,15417,99657,644193,4164129,26917353,173996505,
%T A180028 1124731089,7270376049,46996449561,303789825513,1963728301761,
%U A180028 12693739287105,82053620627913,530402941628793,3428578511656497
%N A180028 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 3*x)/(1 - 6*x - 3*x^2).
%C A180028 The a(n) represent the number of n-move routes of a fairy chess piece starting in the center square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen.
%C A180028 On a 3 X 3 chessboard there are 2^9 = 512 ways to explode with fury on the center square (off the center square the piece behaves like a normal queen). The red queen is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program and A180140. For the center square the 512 red queens lead to 17 red queen sequences, see the overview of red queen sequences and the crossreferences.
%C A180028 The sequence above corresponds to just one red queen vector, i.e., A[5] = [111 111 111] vector. The other squares lead for this vector to A090018.
%C A180028 This sequence belongs to a family of sequences with g.f. (1+k*x)/(1 - 6*x - k*x^2). The members of this family that are red queen sequences are A180028 (k=3; this sequence), A180029 (k=2), A015451 (k=1), A000400 (k=0), A001653 (k=-1), A180034 (k=-2), A084120 (k=-3), A154626 (k=-4) and A000012 (k=-5). Other members of this family are A123362 (k=5), 6*A030192(k=-6).
%C A180028 Inverse binomial transform of A107903.
%D A180028 Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.
%H A180028 Vincenzo Librandi, <a href="/A180028/b180028.txt">Table of n, a(n) for n = 0..200</a>
%H A180028 Johannes W. Meijer, <a href="/A180028/a180028.jpg">The red queen sequences</a>.
%H A180028 Wikipedia, <a href="http://en.wikipedia.org/wiki/Alice_in_Wonderland_(2010_film)">Alice in Wonderland (2010 film)</a>.
%H A180028 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6, 3).
%F A180028 G.f.: (1+3*x)/(1 - 6*x - 3*x^2).
%F A180028 a(n) = 6*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 9.
%F A180028 a(n) = ((1-A)*A^(-n-1) + (1-B)*B^(-n-1))/4 with A=(-1+2*sqrt(3)/3) and B=(-1-2*sqrt(3)/3).
%F A180028 Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A108411(n+1)/(A041017(n-1)*sqrt(12) - A041016(n-1)) for n >= 1.
%p A180028 nmax:=19; m:=5; A[1]:=[0,1,1,1,1,0,1,0,1]: A[2]:=[1,0,1,1,1,1,0,1,0]: A[3]:=[1,1,0,0,1,1,1,0,1]: A[4]:=[1,1,0,0,1,1,1,1,0]: A[5]:=[1,1,1,1,1,1,1,1,1]: A[6]:=[0,1,1,1,1,0,0,1,1]: A[7]:=[1,0,1,1,1,0,0,1,1]: A[8]:=[0,1,0,1,1,1,1,0,1]: A[9]:=[1,0,1,0,1,1,1,1,0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
%t A180028 LinearRecurrence[{6,3},{1,9},50] (* _Vincenzo Librandi_, Nov 15 2011 *)
%o A180028 (Magma) I:=[1,9]; [n le 2 select I[n] else 6*Self(n-1)+3*Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Nov 15 2011
%Y A180028 Cf. A180140 (berserker sequences)
%Y A180028 Cf. A180032 (Corner and side squares).
%Y A180028 Cf. Red queen sequences center square [decimal value A[5]]: A180028 [511], A180029 [255], A180031 [495], A015451 [127], A152240 [239], A000400 [63], A057088 [47], A001653 [31], A122690 [15], A180034 [23], A180036 [7], A084120 [19], A180038 [3], A154626 [17], A015449 [1], A000012 [16], A000007 [0].
%K A180028 easy,nonn
%O A180028 0,2
%A A180028 _Johannes W. Meijer_, Aug 09 2010; edited Jun 21 2013