cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180032 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1+x)/(1-5*x-7*x^2).

This page as a plain text file.
%I A180032 #21 Apr 04 2024 12:14:27
%S A180032 1,6,37,227,1394,8559,52553,322678,1981261,12165051,74694082,
%T A180032 458625767,2815987409,17290317414,106163498933,651849716563,
%U A180032 4002393075346,24574913392671,150891318490777,926480986202582,5688644160448349
%N A180032 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1+x)/(1-5*x-7*x^2).
%C A180032 The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner or side square (m = 1, 3, 7, 9; 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a white chess queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen.
%C A180032 On a 3 X 3 chessboard there are 2^9 = 512 ways to explode with fury on the central square (we assume here that a red queen might behave like a white queen). The red queen is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program. For the corner and side squares the 512 red queens lead to 17 red queen sequences, see the cross-references for the complete set.
%C A180032 The sequence above corresponds to 8 red queen vectors, i.e., A[5] vectors, with decimal values 239, 367, 431, 463, 487, 491, 493 and 494. The central square leads for these vectors to A152240.
%C A180032 This sequence belongs to a family of sequences with g.f. (1+x)/(1 - 5*x - k*x^2). The members of this family that are red queen sequences are A180030 (k=8), A180032 (k=7; this sequence), A000400 (k=6), A180033 (k=5), A126501 (k=4), A180035 (k=3), A180037 (k=2) A015449 (k=1) and A003948 (k=0). Other members of this family are A030221 (k=-1), A109114 (k=-3), A020989 (k=-4), A166060 (k=-6).
%C A180032 Inverse binomial transform of A054413.
%H A180032 Vincenzo Librandi, <a href="/A180032/b180032.txt">Table of n, a(n) for n = 0..200</a>
%H A180032 Wikipedia, <a href="http://en.wikipedia.org/wiki/Alice_in_Wonderland_(2010_film)">Alice in Wonderland (2010 film)</a>
%H A180032 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5, 7).
%F A180032 G.f.: (1+x)/(1 - 5*x - 7*x^2).
%F A180032 a(n) = 5*a(n-1) + 7*a(n-2) with a(0) = 1 and a(1) = 6.
%F A180032 a(n) = ((7+9*A)*A^(-n-1) + (7+9*B)*B^(-n-1))/53 with A = (-5+sqrt(53))/14 and B = (-5-sqrt(53))/14.
%p A180032 with(LinearAlgebra): nmax:=20; m:=1; A[5]:= [1,1,1,1,0,1,1,1,0]: A:=Matrix([[0,1,1,1,1,0,1,0,1], [1,0,1,1,1,1,0,1,0], [1,1,0,0,1,1,1,0,1], [1,1,0,0,1,1,1,1,0], A[5], [0,1,1,1,1,0,0,1,1], [1,0,1,1,1,0,0,1,1], [0,1,0,1,1,1,1,0,1], [1,0,1,0,1,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
%t A180032 LinearRecurrence[{5,7},{1,6},40] (* _Vincenzo Librandi_, Nov 15 2011 *)
%t A180032 CoefficientList[Series[(1+x)/(1-5x-7x^2),{x,0,30}],x] (* _Harvey P. Dale_, Apr 04 2024 *)
%o A180032 (Magma) I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)+7*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 15 2011
%Y A180032 Cf. A180028 (Central square).
%Y A180032 Cf. Red queen sequences corner and side squares [decimal value A[5]]: A090018 [511], A135030 [255], A180030 [495], A005668 [127], A180032 [239], A000400 [63], A180033 [47], A001109 [31], A126501 [15], A154244 [23], A180035 [7],  A138395 [19], A180037 [3], A084326 [17], A015449 [1], A003463 [16], A003948 [0].
%K A180032 easy,nonn
%O A180032 0,2
%A A180032 _Johannes W. Meijer_, Aug 09 2010