This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180042 #21 Jul 11 2017 07:39:23 %S A180042 1,2,3,4,5,6,7,8,9,10,12,14,15,18,20,24,30 %N A180042 The possible orders of cyclic groups that can be realized as holonomy groups of crystallographic groups in dimension 7. %C A180042 In Lutowski's article the CARAT system is used to calculate a list of all isomorphism classes of 7-dimensional Bieberbach groups with cyclic holonomy group. The final list of 316 groups is presented on the undated link by the same author. %C A180042 Sorted union of first floor(7/2)+1 = 4 rows of A080738. - _Andrey Zabolotskiy_, Jul 10 2017 %H A180042 H. Hiller, <a href="https://doi.org/10.1107/S0108767385001180">The Crystallographic Restriction in Higher Dimensions</a>, Acta Cryst. (1985), A41, 541-544. %H A180042 Rafal Lutowski, <a href="http://arxiv.org/abs/1101.2633">Seven dimensional flat manifolds with a cyclic holonomy group</a>. %H A180042 R. Lutowski, <a href="http://rlutowsk.mat.ug.edu.pl/flat7cyclic/">A list of 7-dimensional Bieberbach groups with cyclic holonomy</a>, Jan 13, 2011. %H A180042 W. Plesken and T. Schulz, <a href="http://wwwb.math.rwth-aachen.de/carat/">The CARAT Homepage</a> %H A180042 W. Plesken and T. Schulz, <a href="/A006226/a006226.pdf">CARAT Homepage</a> [Cached copy in pdf format (without subsidiary pages), with permission] %H A180042 W. Plesken and T. Schulz, <a href="/A006226/a006226_1.pdf">Introduction to CARAT</a> [Cached copy in pdf format (without subsidiary pages), with permission] %K A180042 nonn,fini,full %O A180042 1,2 %A A180042 _Jonathan Vos Post_, Jan 14 2011