This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180049 #17 Dec 24 2021 21:54:25 %S A180049 1,0,1,3,0,1,0,7,0,1,15,0,12,0,1,0,57,0,18,0,1,105,0,141,0,25,0,1,0, %T A180049 561,0,285,0,33,0,1,945,0,1830,0,510,0,42,0,1,0,6555,0,4680,0,840,0, %U A180049 52,0,1,10395,0,26685,0,10290,0,1302,0,63,0,1,0,89055,0,82845,0,20370,0,1926,0,75,0,1 %N A180049 Coefficient triangle of the numerators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... . %C A180049 Equivalence to the recurrence formula needs formal proof. This continued fraction converges to 0.525135276160981... for w=1. A conjecture by Ramanujan puts this equal to -1 + 1/(sqrt(e*Pi/2) - Sum_{k>=1} 1/(2k-1)!!). Row sums equal A059480. %H A180049 <a href="http://www.komal.hu/forum/forum.cgi?a=to&tid=94&st=50&dr=1&sp=1233">Hungarian discussion forum</a> %F A180049 b(0)=1; b(1)=w; b(n) = w*b(n-1) + (n+1)*b(n-2) (conjecture). %e A180049 The numerator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 57w + 18w^3 + w^5. %e A180049 From _Philippe Deléham_, Nov 06 2013: (Start) %e A180049 Triangle begins: %e A180049 1; %e A180049 0, 1; %e A180049 3, 0, 1; %e A180049 0, 7, 0, 1; %e A180049 15, 0, 12, 0, 1; %e A180049 0, 57, 0, 18, 0, 1; %e A180049 105, 0, 141, 0, 25, 0, 1; %e A180049 0, 561, 0, 285, 0, 33, 0, 1; %e A180049 945, 0, 1830, 0, 510, 0, 42, 0, 1; %e A180049 0, 6555, 0, 4680, 0, 840, 0, 52, 0, 1; %e A180049 10395, 0, 26685, 0, 10290, 0, 1302, 0, 63, 0, 1; %e A180049 ... (End) %e A180049 [extended by _M. F. Hasler_, Oct 21 2014] %t A180049 Table[ CoefficientList[ Numerator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 2, 16} ] or equivalently Clear[ b ]; b[ 0 ]=1; b[ 1 ]=w; b[ n_ ]:=b[ n ] = w b[ n-1 ]+(n+1) b[ n-2 ]; Table[ CoefficientList[ b[ k ]//Expand, w ], {k, 0, 14} ] %o A180049 (PARI) t=x-w;for(n=1,12,t=substpol(t,x,w+n/x);print(Vecrev(numerator(substpol(t,x,w))))) \\ _M. F. Hasler_, Oct 21 2014 %Y A180049 Cf. A059480, A084950, A180047, A180048, A230698. %K A180049 nonn,tabl %O A180049 1,4 %A A180049 _Wouter Meeussen_, Aug 08 2010