This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180050 #4 Apr 25 2016 12:09:15 %S A180050 1,1,1,1,1,1,-1,-2,-3,1,-1,1,3,-3,1,-2,-3,-3,2,-3,1,-1,2,2,0,2,-3,1, %T A180050 -2,-4,-3,0,-1,2,-3,1,-2,2,3,-3,3,-1,2,-3,1,-2,-4,-4,3,-4,2,-1,2,-3,1, %U A180050 -1,3,4,-1,0,-1,2,-1,2,-3,1,-2,-5,-5,1,1,-1,-2,2,-1,2,-3,1,-2,3,4,-4,3,-1,2 %N A180050 Triangle T(n,k) read by rows. n>3,k=1 T(n,k)=A002321(n-1). The rest of the table is described by the recurrence in the Excel formula. %C A180050 Matrix inverse of A180051. Where the Excel formula says "randbetween(-9;9)" this table has the values of the Mertens function in the first column. Help with translating the spreadsheet formula would be appreciated. %F A180050 Contribution from _Mats Granvik_, Aug 11 2010: (Start) %F A180050 [from Wouter Meeussen, seqfan] %F A180050 a(r,c)=0 /; c>r %F A180050 a(r,c)=1 /; r<=3 %F A180050 a(r,1)=sum(Amu(k),k=1..r) %F A180050 a(r,c)=a(r,c-1)-sum(a(r-j,c), j=1..c-1)/; c<=3 %F A180050 a(r,c)=sum(a(r-j,c-1), j=1..c-2)-sum(a(r-j,c), j=1..c-1) %F A180050 (End) %e A180050 Table begins: %e A180050 1, %e A180050 1,1, %e A180050 1,1,1, %e A180050 -1,-2,-3,1, %e A180050 -1,1,3,-3,1, %e A180050 -2,-3,-3,2,-3,1, %e A180050 -1,2,2,0,2,-3,1, %e A180050 -2,-4,-3,0,-1,2,-3,1, %e A180050 -2,2,3,-3,3,-1,2,-3,1, %e A180050 -2,-4,-4,3,-4,2,-1,2,-3,1, %e A180050 -1,3,4,-1,0,-1,2,-1,2,-3,1, %e A180050 -2,-5,-5,1,1,-1,-2,2,-1,2,-3,1, %e A180050 -2,3,4,-4,3,-1,2,-2,2,-1,2,-3,1, %e A180050 -3,-6,-5,3,-4,2,-2,1,-2,2,-1,2,-3,1, %t A180050 Contribution from _Mats Granvik_, Aug 11 2010: (Start) %t A180050 [from Wouter Meeussen, seqfan] %t A180050 Clear[a]; %t A180050 a[r_,c_]:=0 /; c>r; %t A180050 a[r_,c_]:=1 /; r<=3; %t A180050 a[r_,1]:=Sum[MoebiusMu[k],{k,0,r-1}]; %t A180050 a[r_,c_]:=a[r,c-1]-Sum[a[r-j,c], {j,1,c-1}]/; c<=3; %t A180050 a[r_,c_]:=a[r,c]=Sum[a[r-j,c-1], {j,1,c-2}]-Sum[a[r-j,c], {j,1,c-1}]; %t A180050 (m=Table[a[i,j],{i,14},{j,14}])//ColumnForm %t A180050 (End) %o A180050 (Excel) Using European dot comma style: %o A180050 =if(row()>=column();if(row()<=3;1;if(column()=1; randbetween(-9;9);if(or(column()=2;column()=3);sum(indirect(address(row();column()-1; 4)))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4));sum(indirect(address(row()-column()+2; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4)))));0) %Y A180050 Cf. A002321, A180051. %K A180050 sign,tabl %O A180050 1,8 %A A180050 _Mats Granvik_, Aug 08 2010