This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180055 #19 Jul 30 2025 09:47:04 %S A180055 13,26,29,52,53,55,58,61,77,103,104,106,109,110,111,116,117,119,122, %T A180055 125,154,157,205,206,207,208,212,213,215,218,219,220,221,222,223,231, %U A180055 232,234,237,238,239,244,245,247,250,253,308,309,311,314,317,333,359,365 %N A180055 Numbers k such that in binary expansion, the number of 1's in 5*k is less than the number of 1's in k. %C A180055 Or, binary weight of 5*k is less than binary weight of k. %C A180055 Numbers k such that A000120(k) > A000120(5*k). %C A180055 Also called the 5-flimsy numbers; see the Stolarsky reference. %C A180055 If m is here, 2m is too. Hence the "primitive solutions" are all odd ones: 13,29,53,55,61,77,103,109,111,117,119,125,157,205,207,213,215,219,221,223,231, ... %H A180055 Amiram Eldar, <a href="/A180055/b180055.txt">Table of n, a(n) for n = 1..10000</a> %H A180055 Kenneth B. Stolarsky, <a href="https://eudml.org/doc/205727">Integers whose multiples have anomalous digital frequencies</a>, Acta Arithmetica 38 (2) (1980), 117-128. %p A180055 filter:= proc(k) convert(convert(5*k,base,2),`+`) < convert(convert(k,base,2),`+`) end proc: %p A180055 select(filter, [$1..1000]); # _Robert Israel_, Jul 29 2025 %t A180055 Select[Range[1000],Count[IntegerDigits[5#,2],1]<Count[IntegerDigits[ #,2],1]&] %t A180055 Select[Range[365], Less@@ DigitSum[{5*#, #}, 2]&] (* _Amiram Eldar_, Jul 29 2025 *) %o A180055 (PARI) for(k=1,370, if(hammingweight(5*k) < hammingweight(k), print1(k,", "))) \\ _Hugo Pfoertner_, Dec 27 2019 %Y A180055 Cf. A000120, A005360, A180054. %K A180055 base,nonn,easy %O A180055 1,1 %A A180055 _Zak Seidov_, Aug 08 2010