cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180114 a(n) = sigma(A001694(n)), sum of divisors of the powerful number A001694(n).

Original entry on oeis.org

1, 7, 15, 13, 31, 31, 40, 63, 91, 57, 127, 195, 121, 217, 280, 133, 156, 255, 403, 183, 399, 465, 600, 403, 364, 511, 819, 307, 847, 400, 381, 855, 961, 1240, 741, 931, 1092, 1023, 553, 1651, 781, 1815, 1240, 1281, 1093, 1767, 1953, 871, 2520, 2821, 993, 1995
Offset: 1

Views

Author

Walter Kehowski, Aug 10 2010

Keywords

Examples

			Sigma(2^2) = 7, sigma(2^3) = 15, sigma(3^2) = 13.
		

Crossrefs

Programs

  • Maple
    emin := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); min(L) else 0 fi end: L:=[]: for w to 1 do for n from 1 to 144 do sn:=sigma(n); if emin(n)>1 then L:=[op(L),sn]; print(n,ifactor(n),sn,ifactor(sn)) fi; od; od;
  • Mathematica
    pwfQ[n_] := n == 1 || Min[Last /@ FactorInteger[n]] > 1; DivisorSigma[1, Select[ Range@ 1000, pwfQ]] (* Giovanni Resta, Feb 06 2018 *)
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 1, print1(sigma(k), ", "))); \\ Amiram Eldar, May 12 2023
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A180114_gen(): # generator of terms
        for n in count(1):
            f = factorint(n)
            if all(e>1 for e in f.values()):
                yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
    A180114_list = list(islice(A180114_gen(),20)) # Chai Wah Wu, May 21 2023
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, divisor_sigma
    def A180114(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c
        return divisor_sigma(bisection(f, n, n)) # Chai Wah Wu, Sep 10 2024

Formula

From Amiram Eldar, May 12 2023: (Start)
Sum_{A001694(k) < x} a(k) = c * x^(3/2) + O(x^(23/18 + eps)), where c = A362984 * A090699 / 3 = 1.5572721108... (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^3, where c = A362984 / (3 * A090699^2) = 0.151716514097... . (End)

Extensions

a(1)=1 prepended by and more terms from Giovanni Resta, Feb 06 2018