A180114 a(n) = sigma(A001694(n)), sum of divisors of the powerful number A001694(n).
1, 7, 15, 13, 31, 31, 40, 63, 91, 57, 127, 195, 121, 217, 280, 133, 156, 255, 403, 183, 399, 465, 600, 403, 364, 511, 819, 307, 847, 400, 381, 855, 961, 1240, 741, 931, 1092, 1023, 553, 1651, 781, 1815, 1240, 1281, 1093, 1767, 1953, 871, 2520, 2821, 993, 1995
Offset: 1
Examples
Sigma(2^2) = 7, sigma(2^3) = 15, sigma(3^2) = 13.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk and Matilde Lalín, Asymptotics of sums of divisor functions over sequences with restricted factorization structure, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634, eq. (7).
Programs
-
Maple
emin := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); min(L) else 0 fi end: L:=[]: for w to 1 do for n from 1 to 144 do sn:=sigma(n); if emin(n)>1 then L:=[op(L),sn]; print(n,ifactor(n),sn,ifactor(sn)) fi; od; od;
-
Mathematica
pwfQ[n_] := n == 1 || Min[Last /@ FactorInteger[n]] > 1; DivisorSigma[1, Select[ Range@ 1000, pwfQ]] (* Giovanni Resta, Feb 06 2018 *)
-
PARI
lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 1, print1(sigma(k), ", "))); \\ Amiram Eldar, May 12 2023
-
Python
from itertools import count, islice from math import prod from sympy import factorint def A180114_gen(): # generator of terms for n in count(1): f = factorint(n) if all(e>1 for e in f.values()): yield prod((p**(e+1)-1)//(p-1) for p,e in f.items()) A180114_list = list(islice(A180114_gen(),20)) # Chai Wah Wu, May 21 2023
-
Python
from math import isqrt from sympy import mobius, integer_nthroot, divisor_sigma def A180114(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f, kmin=0, kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l = n+x, 0 j = isqrt(x) while j>1: k2 = integer_nthroot(x//j**2, 3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) c -= squarefreepi(integer_nthroot(x, 3)[0])-l return c return divisor_sigma(bisection(f, n, n)) # Chai Wah Wu, Sep 10 2024
Formula
Extensions
a(1)=1 prepended by and more terms from Giovanni Resta, Feb 06 2018