This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180128 #18 Jan 19 2022 19:27:01 %S A180128 1,2,29,6640,4868296,5725998504,11305600374272,35954639671827328 %N A180128 Maximal determinant of an n X n matrix whose elements are a permutation of the first n^2 prime numbers. %C A180128 The terms a(5), a(6), a(7) were found by tabu search, with strong numerical evidence for the optimality of a(7). %C A180128 A known lower bound for the next term a(8) is 154665569137423060000. %C A180128 Upper bounds for higher terms can be found by the method described by O. Gasper, H. Pfoertner and M. Sigg, and are given in A180127, e.g., a(8) <= 154715716383037989022. %C A180128 An improved lower bound is a(8) >= 154671943501236284416, provided in a private communication by Richard Gosiorovsky. - _Hugo Pfoertner_, Aug 27 2021 %H A180128 Ortwin Gasper, Hugo Pfoertner and Markus Sigg, <a href="http://www.emis.de/journals/JIPAM/article1119.html?sid=1119">An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum</a> JIPAM, Vol. 10, Iss. 3, Art. 63, 2008 %H A180128 Markus Sigg, <a href="https://arxiv.org/abs/1804.02897">Gasper's determinant theorem, revisited</a>, arXiv:1804.02897 [math.CO] %H A180128 <a href="/index/De#determinants">Index entries for sequences related to maximal determinants</a> %e A180128 a(2) = 29: %e A180128 . 7 3 %e A180128 . 2 5 %e A180128 a(3) = 6640: %e A180128 . 23 11 5 %e A180128 . 3 17 13 %e A180128 . 7 2 19 %e A180128 a(4) = 4868296: %e A180128 . 53 11 23 13 %e A180128 . 17 47 29 3 %e A180128 . 7 5 43 37 %e A180128 . 19 31 2 41 %e A180128 a(5) = 5725998504 %e A180128 . 89 41 23 2 53 %e A180128 . 31 97 29 47 11 %e A180128 . 59 13 79 61 7 %e A180128 . 37 19 5 83 67 %e A180128 . 3 43 71 17 73 %e A180128 a(6) = 11305600374272: %e A180128 . 137 73 7 89 83 13 %e A180128 . 79 139 67 19 3 97 %e A180128 . 101 5 149 61 37 53 %e A180128 . 2 109 103 71 113 11 %e A180128 . 59 29 41 17 131 127 %e A180128 . 23 47 43 151 31 107 %e A180128 a(7) = 35954639671827332: %e A180128 . 227 71 173 43 83 29 73 %e A180128 . 151 163 5 181 2 103 89 %e A180128 . 31 223 139 61 137 97 13 %e A180128 . 23 47 157 211 109 19 131 %e A180128 . 113 7 67 127 167 199 17 %e A180128 . 53 79 149 37 11 193 179 %e A180128 . 101 107 3 41 191 59 197 %Y A180128 Cf. A180127 [upper bounds for a(n)], A085000 [maximal determinants for matrix elements 1, ..., n^2]. %Y A180128 Cf. A340923, A340924, A340925. %K A180128 nonn,hard,more %O A180128 0,2 %A A180128 _Hugo Pfoertner_, Aug 11 2010 %E A180128 a(7) corrected, based on private communication from Richard Gosiorovsky by _Hugo Pfoertner_, Aug 27 2021 %E A180128 a(0)=1 prepended by _Alois P. Heinz_, Jan 19 2022