This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180137 #11 May 06 2021 21:21:08 %S A180137 5,4,24,4,8,22,40,4,14,16,28,10,266,40,20,46,112,156,12,20,228,26,2, %T A180137 220,60,140,92,42,316,132,84,70,68,50,280,164,112,146,148,30,36,126, %U A180137 390,30,30,38,462,114,14,86,56,168,1600,224,104,8,72,434,142,60,750,202,318 %N A180137 Smallest k such that k*13^n is a sum of two successive primes. %C A180137 If a(n) == 0 (mod 13), then a(n+1) = a(n)/13. %C A180137 Records: 5, 24, 40, 266, 316, 390, 462, 1600, 2616, 5834, ..., . %C A180137 Corresponding primes are twin primes for n = 0, 2, ..., . %H A180137 Robert G. Wilson v, <a href="/A180137/b180137.txt">Table of n, a(n) for n = 0..200</a> %t A180137 f[n_] := Block[{k = 1, j = 13^n/2}, While[ h = k*j; PrimeQ@h || NextPrime[h, -1] + NextPrime@h != 2 h, k++ ]; k]; Array[f, 80, 0] %o A180137 (Python) %o A180137 from sympy import isprime, nextprime, prevprime %o A180137 def ok(n): %o A180137 if n <= 5: return n == 5 %o A180137 return not isprime(n//2) and n == prevprime(n//2) + nextprime(n//2) %o A180137 def a(n): %o A180137 k, pow13 = 1, 13**n %o A180137 while not ok(k*pow13): k += 1 %o A180137 return k %o A180137 print([a(n) for n in range(63)]) # _Michael S. Branicky_, May 04 2021 %Y A180137 Cf. A180130, A180131, A180132, A180133, A180134, A179975, A180135, A180136, A180138. %K A180137 nonn %O A180137 0,1 %A A180137 _Zak Seidov_ & _Robert G. Wilson v_, Aug 15 2010