This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180144 #6 Jul 03 2023 12:29:31 %S A180144 1,4,13,46,163,580,2065,7354,26191,93280,332221,1183222,4214107, %T A180144 15008764,53454505,190381042,678052135,2414918488,8600859733, %U A180144 30632416174,109098967987,388561736308,1383883144897,4928772907306 %N A180144 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 - 2*x^2)/(1 - 4*x + x^2 + 2*x^3). %C A180144 The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140. %C A180144 The sequence above corresponds to just one A[5] vector with decimal value 16. This vector leads for the corner squares to A180143 and for the central square to A000012. %H A180144 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4, -1, -2). %F A180144 G.f.: (1-2*x^2)/(1 - 4*x + x^2 + 2*x^3). %F A180144 a(n) = 4*a(n-1) - 1*a(n-2) - 2*a(n-3) with a(0)=1, a(1)=4 and a(2)=13. %F A180144 a(n) = 1/4 + (21-6*A)*A^(-n-1)/68 + (21-6*B)*B^(-n-1)/68 with A=(-3+sqrt(17))/4 and B=(-3-sqrt(17))/4. %F A180144 Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n)*(2)^(n+1)/((2*A007482(n) - 3*A007482(n-1)) - A007482(n-1)*sqrt(17)) for n >= 1. %p A180144 with(LinearAlgebra): nmax:=23; m:=2; A[5]:=[0,0,0,0,1,0,0,0,0]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax); %Y A180144 Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square). %K A180144 easy,nonn %O A180144 0,2 %A A180144 _Johannes W. Meijer_, Aug 13 2010