This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180165 #45 Feb 01 2021 00:14:34 %S A180165 1,1,2,1,3,3,1,4,8,5,1,5,15,22,8,1,6,24,57,60,13,1,7,35,116,216,164, %T A180165 21,1,8,48,205,560,819,448,34,1,9,63,330,1200,2704,3105,1224,55,1,10, %U A180165 80,497,2268,7025,13056,11772,3344,89,1,11,99,712,3920,15588,41125,63040,44631,9136,144 %N A180165 Triangle read by rows, derived from an array of sequences generated from (1 + x)/ (1 - r*x - r*x^2). %C A180165 Row sums = A180166: (1, 3, 7, 18, 51, 161, 560, 2163, ...). %C A180165 Rows of the array, with other offsets: (row 1 = A000045 starting with offset 2: (1, 2, 3, 5, 8, 13, ...); and for rows > 1, the entries: A028859, A125145, A086347, and A180033 start with offset 0; with the offset in the present array = 1. %H A180165 Robert P. P. McKone, <a href="/A180165/b180165.txt">Antidiagonals n = 0..199, flattened</a> %F A180165 Triangle read by rows, generated from an array of sequences generated from (1 + x)/(1 - r*x - r*x^2); r > 0. %F A180165 Alternatively, given the array with offset 1, the sequence r-th sequence is generated from a(k) = r*a(k-1) + r*(k-2); a(1) = 1, a(2) = r+1. %F A180165 With a matrix method, the array can be generated from a 2 X 2 matrix of the form [0,1; r,r] = M, such that M^n * [1,r+1] = [r,n+1; r,n+2]. %F A180165 Also, for r > 1, the (r+1)-th row of the array is the INVERT transform of the r-th row. %e A180165 First few rows of the triangle: %e A180165 1; %e A180165 1, 2; %e A180165 1, 3, 3; %e A180165 1, 4, 8, 5; %e A180165 1, 5, 15, 22, 8; %e A180165 1, 6, 24, 57, 60, 13; %e A180165 1, 7, 35, 116, 216, 164, 21; %e A180165 1, 8, 48, 205, 560, 819, 448, 34; %e A180165 1, 9, 63, 330, 1200, 2704, 3105, 1224, 55; %e A180165 1, 10, 80, 497, 2268, 7025, 13056, 11772, 3344, 89; %e A180165 1, 11, 99, 712, 3920, 15588, 41125, 63040, 44631, 9136, 144; %e A180165 1, 12, 120, 981, 6336, 30919, 107136, 240750, 304384, 169209, 24960, 233; %e A180165 ... %e A180165 As an array A(r,k) by upwards antidiagonals: %e A180165 k=1 k=2 k=3 k=4 k=5 %e A180165 r=1: 1, 2, 3, 5, 8, ... %e A180165 r=2: 1, 3, 8, 22, 60, ... %e A180165 r=3: 1, 4, 15, 57, 216, ... %e A180165 r=4: 1, 5, 24, 116, 560, ... %e A180165 r=5: 1, 6, 35, 205, 1200, ... %e A180165 Row r=5 = A180033 = (1, 6, 35, 205,...) and is generated from (1+x)/(1-5*x-5*x^2); is the INVERT transform of row r=4; and the array term A(5,4) = 205 = 5*35 + 5*6. %e A180165 Terms A(2,4) and A(2,5) = [22,60] = [0,1; 2,2]^3 * [1,3]. %t A180165 A180165[a_] := Reverse[Table[Table[CoefficientList[Series[(1 + x)/(1 - r*x - r*x^2), {x, 0, a - 2}], x], {r, 1, a + 1}][[k, n - k]], {n, 1, a}, {k, 1, n - 1}], 2] // Flatten; %t A180165 A180165[12] (* _Robert P. P. McKone_, Jan 19 2021 *) %Y A180165 Cf. A180166, A000045, A028859, A125145, A086347, A180033. %Y A180165 Cf. A340156. %K A180165 nonn,tabl %O A180165 1,3 %A A180165 _Gary W. Adamson_, Aug 14 2010 %E A180165 a(35) corrected by _Robert P. P. McKone_, Dec 31 2020