cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180165 Triangle read by rows, derived from an array of sequences generated from (1 + x)/ (1 - r*x - r*x^2).

This page as a plain text file.
%I A180165 #45 Feb 01 2021 00:14:34
%S A180165 1,1,2,1,3,3,1,4,8,5,1,5,15,22,8,1,6,24,57,60,13,1,7,35,116,216,164,
%T A180165 21,1,8,48,205,560,819,448,34,1,9,63,330,1200,2704,3105,1224,55,1,10,
%U A180165 80,497,2268,7025,13056,11772,3344,89,1,11,99,712,3920,15588,41125,63040,44631,9136,144
%N A180165 Triangle read by rows, derived from an array of sequences generated from (1 + x)/ (1 - r*x - r*x^2).
%C A180165 Row sums = A180166: (1, 3, 7, 18, 51, 161, 560, 2163, ...).
%C A180165 Rows of the array, with other offsets: (row 1 = A000045 starting with offset 2: (1, 2, 3, 5, 8, 13, ...); and for rows > 1, the entries: A028859, A125145, A086347, and A180033 start with offset 0; with the offset in the present array = 1.
%H A180165 Robert P. P. McKone, <a href="/A180165/b180165.txt">Antidiagonals n = 0..199, flattened</a>
%F A180165 Triangle read by rows, generated from an array of sequences generated from (1 + x)/(1 - r*x - r*x^2); r > 0.
%F A180165 Alternatively, given the array with offset 1, the sequence r-th sequence is generated from a(k) = r*a(k-1) + r*(k-2); a(1) = 1, a(2) = r+1.
%F A180165 With a matrix method, the array can be generated from a 2 X 2 matrix of the form [0,1; r,r] = M, such that M^n * [1,r+1] = [r,n+1; r,n+2].
%F A180165 Also, for r > 1, the (r+1)-th row of the array is the INVERT transform of the r-th row.
%e A180165 First few rows of the triangle:
%e A180165   1;
%e A180165   1, 2;
%e A180165   1, 3, 3;
%e A180165   1, 4, 8, 5;
%e A180165   1, 5, 15, 22, 8;
%e A180165   1, 6, 24, 57, 60, 13;
%e A180165   1, 7, 35, 116, 216, 164, 21;
%e A180165   1, 8, 48, 205, 560, 819, 448, 34;
%e A180165   1, 9, 63, 330, 1200, 2704, 3105, 1224, 55;
%e A180165   1, 10, 80, 497, 2268, 7025, 13056, 11772, 3344, 89;
%e A180165   1, 11, 99, 712, 3920, 15588, 41125, 63040, 44631, 9136, 144;
%e A180165   1, 12, 120, 981, 6336, 30919, 107136, 240750, 304384, 169209, 24960, 233;
%e A180165   ...
%e A180165 As an array A(r,k) by upwards antidiagonals:
%e A180165         k=1  k=2  k=3   k=4    k=5
%e A180165   r=1:   1,   2,    3,    5,     8, ...
%e A180165   r=2:   1,   3,    8,   22,    60, ...
%e A180165   r=3:   1,   4,   15,   57,   216, ...
%e A180165   r=4:   1,   5,   24,  116,   560, ...
%e A180165   r=5:   1,   6,   35,  205,  1200, ...
%e A180165 Row r=5 = A180033 = (1, 6, 35, 205,...) and is generated from (1+x)/(1-5*x-5*x^2); is the INVERT transform of row r=4; and the array term A(5,4) = 205 = 5*35 + 5*6.
%e A180165 Terms A(2,4) and A(2,5) = [22,60] = [0,1; 2,2]^3 * [1,3].
%t A180165 A180165[a_] := Reverse[Table[Table[CoefficientList[Series[(1 + x)/(1 - r*x - r*x^2), {x, 0, a - 2}], x], {r, 1, a + 1}][[k, n - k]], {n, 1, a}, {k, 1, n - 1}], 2] // Flatten;
%t A180165 A180165[12] (* _Robert P. P. McKone_, Jan 19 2021 *)
%Y A180165 Cf. A180166, A000045, A028859, A125145, A086347, A180033.
%Y A180165 Cf. A340156.
%K A180165 nonn,tabl
%O A180165 1,3
%A A180165 _Gary W. Adamson_, Aug 14 2010
%E A180165 a(35) corrected by _Robert P. P. McKone_, Dec 31 2020