cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180170 a(0) = 1, a(n) = n*a(n-1)*A014963(n).

Original entry on oeis.org

1, 1, 4, 36, 288, 7200, 43200, 2116800, 33868800, 914457600, 9144576000, 1106493696000, 13277924352000, 2243969215488000, 31415569016832000, 471233535252480000, 15079473128079360000, 4357967734014935040000, 78443419212268830720000
Offset: 0

Views

Author

R. J. Mathar, Jan 16 2011

Keywords

Comments

Lcm of the first n terms of the sequence of the denominators A_n of the preprint.

Programs

  • Mathematica
    (* First run the program for A014963 *) b[0] := 1; b[1] := 1; b[n_] := n * b[n - 1] * a[n]; Table[b[n], {n, 0, 19}] (* Alonso del Arte, Jan 16 2011 *)
    Join[{1},Table[n!LCM@@Range[n],{n,1,20}]] (* Benedict W. J. Irwin, Nov 01 2016 *)
    F=Table[1,{n,1,20}];For[i=1,i<20,i++,F[[i+1]]=(i+1)*F[[i]]*Exp[MangoldtLambda[i+1]]];Join[{1},F] (* Benedict W. J. Irwin, Nov 01 2016 *)
  • PARI
    A014963(n)=
    {
        local(r);
        if( isprime(n), return(n));
        if( ispower(n,,&r) && isprime(r), return(r) );
        return(1);
    }
    a(n)=if(n==0,1, n * a(n-1) * A014963(n));
    for(n=0,55, print1(a(n),", "))
    /* Joerg Arndt, Jan 16 2011 */

Formula

a(n) = n! * lcm(1,2,...,n) = n! * A003418(n), n > 0. - Benedict W. J. Irwin, Nov 01 2016