This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180174 #7 Dec 16 2014 15:05:23 %S A180174 1,1,1,1,2,2,2,2,1,1,3,5,7,9,10,10,10,10,10,9,7,5,3,1,1,4,9,16,25,35, %T A180174 45,55,65,75,84,91,96,99,100,100,100,99,96,91,84,75,65,55,45,35,25,16, %U A180174 9,4,1,1,5,14,30,55,90,135,190,255,330,414,505,601,700,800,900,1000,1099 %N A180174 Triangle read by rows of the numbers C(n,k) of k-subsets of a quadratically populated n-multiset M. %C A180174 The multiplicity m(i) of the i-th element with 1 <= i <= n is m(i)=i^2. %C A180174 Thus M=[1,2,2,2,2,...,i^2 x i,...,n^2 x n]. %C A180174 Row sum is equal to A028361. %C A180174 Column for k=2 is equal to AA000096. %C A180174 Column for k=3 is equal to AA005581. %C A180174 Column for k=4 is equal to AA005582. %C A180174 The number of coefficients C(n,k) for given n is equal to A056520. %F A180174 C(0,0) = 0. %F A180174 C(n,k) = sum_{j=(k-LS+1)}^{k} C(n-1,j). %F A180174 for n > 0 and k=1,...,LR with LS = n^2+1 and LR = n*(n+1)*(2*n+1)/6. %F A180174 C(n,k) = C(n,LR-k). %e A180174 For n=4 one has M=[1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]. %e A180174 For k=7 we have 55 subsets from M: %e A180174 [1, 2, 2, 3, 3, 4, 4], [1, 2, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 4, 4], %e A180174 [1, 2, 2, 3, 4, 4, 4], [1, 2, 2, 3, 3, 3, 4], [1, 2, 2, 2, 3, 4, 4], %e A180174 [1, 2, 2, 2, 3, 3, 4], [2, 2, 3, 3, 4, 4, 4], [2, 2, 3, 3, 3, 4, 4], %e A180174 [2, 2, 2, 3, 3, 4, 4], [1, 2, 2, 2, 3, 3, 3], [1, 2, 2, 2, 4, 4, 4], %e A180174 [1, 3, 3, 3, 4, 4, 4], [2, 3, 3, 3, 4, 4, 4], [2, 2, 2, 3, 4, 4, 4], %e A180174 [2, 2, 2, 3, 3, 3, 4], [1, 2, 3, 4, 4, 4, 4], [1, 2, 3, 3, 3, 3, 4], %e A180174 [1, 2, 2, 2, 2, 3, 4], [1, 2, 2, 3, 3, 3, 3], [1, 2, 2, 2, 2, 3, 3], %e A180174 [1, 2, 2, 4, 4, 4, 4], [1, 2, 2, 2, 2, 4, 4], [1, 3, 3, 4, 4, 4, 4], %e A180174 [1, 3, 3, 3, 3, 4, 4], [2, 3, 3, 4, 4, 4, 4], [2, 3, 3, 3, 3, 4, 4], %e A180174 [2, 2, 3, 4, 4, 4, 4], [2, 2, 3, 3, 3, 3, 4], [2, 2, 2, 2, 3, 4, 4], %e A180174 [2, 2, 2, 2, 3, 3, 4], [2, 2, 2, 3, 3, 3, 3], [2, 2, 2, 2, 3, 3, 3], %e A180174 [2, 2, 2, 4, 4, 4, 4], [2, 2, 2, 2, 4, 4, 4], [3, 3, 3, 4, 4, 4, 4], %e A180174 [3, 3, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 3, 3], [1, 2, 4, 4, 4, 4, 4], %e A180174 [1, 3, 4, 4, 4, 4, 4], [1, 3, 3, 3, 3, 3, 4], [2, 3, 4, 4, 4, 4, 4], %e A180174 [2, 3, 3, 3, 3, 3, 4], [2, 2, 3, 3, 3, 3, 3], [2, 2, 4, 4, 4, 4, 4], %e A180174 [3, 3, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 4, 4], [1, 3, 3, 3, 3, 3, 3], %e A180174 [1, 4, 4, 4, 4, 4, 4], [2, 3, 3, 3, 3, 3, 3], [2, 4, 4, 4, 4, 4, 4], %e A180174 [3, 4, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 3, 4], [3, 3, 3, 3, 3, 3, 3], %e A180174 [4, 4, 4, 4, 4, 4, 4]. %p A180174 with(combinat) %p A180174 kend := 4; %p A180174 Liste := NULL; %p A180174 for k from 0 to kend do %p A180174 Liste := Liste, `$`(k, k^2) %p A180174 end do; %p A180174 Liste := [Liste]; %p A180174 for k from 0 to 2^(kend+1)-1 do %p A180174 Teilergebnis[k] := choose(Liste, k) %p A180174 end do; %p A180174 seq(nops(Teilergebnis[k]), k = 0 .. 2^(kend+1)-1) %p A180174 ' Excel VBA %p A180174 Sub A180174() %p A180174 Dim n As Long, nend As Long, k As Long, kk As Long, length_row As Long, length_sum As Long %p A180174 Dim ATable(10, -1000 To 1000) As Double, Summe As Double %p A180174 Dim offset_row As Integer, offset_column As Integer %p A180174 Worksheets("Tabelle2").Select %p A180174 Cells.Select %p A180174 Selection.ClearContents %p A180174 Range("A1").Select %p A180174 offset_row = 1 %p A180174 offset_column = 1 %p A180174 nend = 7 %p A180174 ATable(0, 0) = 1 %p A180174 Cells(0 + offset_row, 0 + offset_column) = 1 %p A180174 For n = 1 To nend %p A180174 length_row = n * (n + 1) * (2 * n + 1) / 6 %p A180174 length_sum = n ^ 2 + 1 %p A180174 For k = 0 To length_row / 2 %p A180174 Summe = 0 %p A180174 For kk = k - length_sum + 1 To k %p A180174 Summe = Summe + ATable(n - 1, kk) %p A180174 Next kk %p A180174 ATable(n, k) = Summe %p A180174 Cells(n + offset_row, k + offset_column) = ATable(n, k) %p A180174 ATable(n, length_row - k) = Summe %p A180174 Cells(n + offset_row, length_row - k + 0 + offset_column) = ATable(n, k) %p A180174 Next k %p A180174 Next n %p A180174 End Sub %Y A180174 Cf. A007318, A008302, A028361, A056520, A000096, A005581, A005582. %K A180174 nonn,tabf %O A180174 0,5 %A A180174 _Thomas Wieder_, Aug 15 2010