cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180185 Triangle read by rows: T(n,k) is the number of permutations of [n] having no 3-sequences and having k successions (0 <= k <= floor(n/2)); a succession of a permutation p is a position i such that p(i +1) - p(i) = 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 11, 9, 1, 53, 44, 9, 309, 265, 66, 3, 2119, 1854, 530, 44, 16687, 14833, 4635, 530, 11, 148329, 133496, 44499, 6180, 265, 1468457, 1334961, 467236, 74165, 4635, 53, 16019531, 14684570, 5339844, 934472, 74165, 1854, 190899411
Offset: 0

Views

Author

Emeric Deutsch, Sep 06 2010

Keywords

Comments

Row n has 1+floor(n/2) entries.
Sum of entries in row n is A002628(n).

Examples

			T(6,3)=3 because we have 125634, 341256, and 563412.
Triangle starts:
     1;
     1;
     1,    1;
     3,    2;
    11,    9,    1;
    53,   44,    9;
   309,  265,   66,    3;
  2119, 1854,  530,   44;
		

Crossrefs

Programs

  • Maple
    d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n, k) if n = 0 and k = 0 then 1 elif k <= (1/2)*n then binomial(n-k, k)*d[n+1-k]/(n-k) else 0 end if end proc: for n from 0 to 12 do seq(a(n, k), k = 0 .. (1/2)*n) end do; # yields sequence in triangular form
  • Mathematica
    d[0] = 1; d[n_] := d[n] = n d[n - 1] + (-1)^n;
    T[n_, k_] := If[n == 0 && k == 0, 1, If[k <= n/2, Binomial[n - k, k] d[n + 1 - k]/(n - k), 0]];
    Table[T[n, k], {n, 0, 20}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, May 23 2020 *)
  • PARI
    d(n) = if(n<2, !n , round(n!/exp(1)));
    for(n=0, 20, for(k=0, (n\2), print1(binomial(n - k, k)*(d(n - k) + d(n - k - 1)),", ");); print();) \\ Indranil Ghosh, Apr 12 2017

Formula

T(n,k) = binomial(n-k,k)*(d(n-k) + d(n-k-1)), where d(j) = A000166(j) are the derangement numbers.
T(n,0) = d(n) + d(n-1) = A000255(n-1).
T(n,1) = d(n).
Sum_{k>=0} k*T(n,k) = A002629(n+1).