A180192 Triangle read by rows: T(n,k) is the number of permutations of [n] having k fixed blocks.
1, 0, 1, 1, 1, 2, 4, 0, 9, 12, 3, 44, 57, 18, 1, 265, 321, 123, 11, 1854, 2176, 888, 120, 2, 14833, 17008, 7218, 1208, 53, 133496, 150505, 65460, 12550, 860, 9, 1334961, 1485465, 657690, 137970, 12405, 309, 14684570, 16170036, 7257240, 1623440
Offset: 0
Examples
T(4,2)=3 because we have (1)4(3)2, (1)32(4), and 3(2)1(4) (the fixed blocks are shown between parentheses). Triangle starts: 1; 0, 1; 1, 1; 2, 4, 0; 9, 12, 3; 44, 57, 18, 1; 265, 321, 123, 11;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
# yields sequence in triangular form: d[0] := 1: for n to 50 do d[n] := n*d[n-1] + (-1)^n od: T := (n, k) -> add(binomial(j-1, k-1)*binomial(n+1-j, k)*d[n-j], j = k .. n+1-k): for n from 0 to 11 do seq(T(n, k), k = 0..ceil((1/2)*n)) od;
-
Mathematica
d = Subfactorial; T[n_, k_] := Sum[Binomial[j-1, k-1] Binomial[n-j+1, k] d[n-j] , {j, k, n-k+1}]; Table[T[n, k], {n, 0, 11}, {k, 0, Ceiling[n/2]}] // Flatten (* Jean-François Alcover, Feb 16 2021 *)
Formula
T(n,k) = Sum_{j=k..n+1-k} binomial(j-1,k-1)*binomial(n+1-j,k)*d(n-j), where d(i) = A000166(i) are the derangement numbers.
The term binomial(j-1,k-1)*binomial(n+1-j,k)*d(n-j) in the above sum gives the number of permutations of [n] having k fixed blocks and a total number of j fixed points.
Sum_{k>=0} k*T(n,k) = (n-1)!*(n-1) = A001563(n-1).
Comments