A180196 Triangle read by rows: T(n,k) is the number of permutations of [n] that have k isolated entries (0 <= k <= n).
1, 0, 1, 1, 0, 1, 1, 2, 0, 3, 2, 2, 9, 0, 11, 3, 11, 9, 44, 0, 53, 7, 20, 75, 44, 265, 0, 309, 14, 73, 141, 574, 265, 1854, 0, 2119, 35, 170, 737, 1104, 4900, 1854, 14833, 0, 16687, 81, 576, 1863, 7814, 9535, 46353, 14833, 133496, 0, 148329, 216, 1556, 8154, 20704, 88335, 90852, 482069, 133496, 1334961, 0, 1468457
Offset: 0
Examples
T(4,2)=9 because we have 124'3', 1'4'23, 1'342', 3'124', 4'3'12, 2'1'34, 231'4', 4'231', and 342'1' (the isolated entries are marked). Triangle starts: 1; 0, 1; 1, 0, 1; 1, 2, 0, 3; 2, 2, 9, 0, 11; 3, 11, 9, 44, 0, 53;
Programs
-
Maple
d[ -1] := 0: d[0] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k < n then sum(binomial(n-1-j, j-k-1)*binomial(j, k)*(d[j]+d[j-1]), j = k+1 .. floor((1/2)*n+(1/2)*k)) elif k = n then d[n]+d[n-1] else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := With[{d = Subfactorial}, Which[k == n == 0, 1, k == n, d[n] + d[n - 1], True, Sum[Binomial[n - 1 - j, j - k - 1]*Binomial[j, k]*(d[j] + d[j - 1]), {j, k + 1, Floor[(n + k)/2]}]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2024 *)
Formula
T(n,k) = Sum_{j=k+1..floor((n+k)/2)} binomial(n-1-j, j-k-1)*binomial(j,k)*(d(j) + d(j-1)), if k < n;
T(n,n) = d(n) + d(n-1); d(i)=A000166(i) are the derangement numbers.
Comments