cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180230 a(n) is the minimal number of additions needed to grow to radius n, in the two-dimensional abelian sandpile growth model with h=2.

Original entry on oeis.org

2, 6, 10, 22, 26, 50, 66, 78, 122, 142, 154, 194, 254, 270, 342, 386, 418, 490, 518, 578, 654, 698, 766, 914, 942, 1074, 1150, 1178, 1310, 1366, 1410, 1570, 1646, 1794, 1894, 2054, 2130, 2246, 2406, 2466, 2654, 2742, 2894, 3006, 3138, 3318, 3582, 3670, 3826
Offset: 0

Views

Author

Anne Fey (a.c.fey-denboer(AT)tudelft.nl), Aug 17 2010

Keywords

Comments

The abelian sandpile growth model starts with height h on every site of the square grid.
An addition increases the height of the origin by 1. After each addition, the model is stabilized by toppling unstable sites.
A site is unstable if its height is at least 4; in a toppling, its height decreases by 4 and the height of its neighbors increases by 1.
If h=2, then for any number of additions, the set of sites that toppled at least once is a square. This was proved in Fey-Redig-2008.
For all n, a(n) <= (2n+3)^2. In Fey-Levine-Peres-2010, it was proved that for n large enough, a(n) >= Pi/4 n^2.

Examples

			After 2 additions, the origin is unstable and topples once. Then every site is stable. Therefore a(0)=2.
After 4 more additions, the origin topples again. Then more sites become unstable, so that the set of sites that toppled at least once becomes the square with radius 1. Therefore a(1) = 6.
		

Crossrefs

Extensions

More terms from Rémy Sigrist, Dec 15 2021