This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180270 #17 May 20 2019 07:08:25 %S A180270 0,1025,476073,27022500,551536100,6129324225,45502479225,253405810448, %T A180270 1137920432400,4322847530025,14366776735025,42801847892100, %U A180270 116415023802948,293153032943225,691043521403025,1538402208782400 %N A180270 Integers of the form (k^12 - k^8 - k^4 + 1)/512. %H A180270 B. Berselli, <a href="/A180270/b180270.txt">Table of n, a(n) for n = 1..100000</a>. [From _Bruno Berselli_, Sep 21 2010] %F A180270 Integers of the form (k^4+1)*( (k-1)*(k+1)*(k^2+1) )^2/512. %F A180270 a(n) = ((2*n-1)^4+1)*((n-1)*n*(n^2+(n-1)^2))^2/8 (for k=2n-1). %F A180270 a(n) = A175110(n-1)*(A001844(n-1)*A000217(n-1))^2. - _Bruno Berselli_, Sep 21 2010 %e A180270 a(2) = 1025 is in the sequence because (3^12 - 3^8 - 3^4 + 1)/512 = 524800/512 = 1025. %p A180270 for n from 1 by 2 to 60 do: x:= (n^12-n^8 -n^4+1)/512: printf(`%d, `, x):od: # incomplete program which also prints rationals, _R. J. Mathar_ %t A180270 Select[Table[(k^12-k^8-k^4+1)/512,{k,40}],IntegerQ] (* _Harvey P. Dale_, Jan 23 2011 *) %K A180270 nonn,easy %O A180270 1,2 %A A180270 _Michel Lagneau_, Aug 23 2010 %E A180270 Comment converted to formula by _R. J. Mathar_, Aug 25 2010 %E A180270 Example corrected and general term of the sequence rewritten by _Bruno Berselli_, Sep 22 2010