cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180274 Integers whose squares are the sums of 24 consecutive squares.

This page as a plain text file.
%I A180274 #33 Aug 12 2024 01:38:30
%S A180274 70,106,158,182,274,430,650,1022,1546,1786,2702,4250,6430,10114,15302,
%T A180274 17678,26746,42070,63650,100118,151474,174994,264758,416450,630070,
%U A180274 991066,1499438,1732262,2620834,4122430,6237050,9810542,14842906,17147626,25943582
%N A180274 Integers whose squares are the sums of 24 consecutive squares.
%C A180274 The corresponding starts of 24 consecutive squares to be summed are A094196.
%H A180274 Colin Barker, <a href="/A180274/b180274.txt">Table of n, a(n) for n = 1..1000</a>
%H A180274 K. S. Brown, <a href="http://www.mathpages.com/home/kmath147.htm">Sum of Consecutive Nth Powers Equals an Nth Power</a>
%H A180274 Fun With Num3ers, <a href="https://benvitalenum3ers.wordpress.com/2016/07/27/sets-of-24-consecutive-squares-whose-sum-is-a-square/">Sets of 24 consecutive squares whose sum is a square</a>, July 27 2016.
%H A180274 V. Pletser, <a href="http://arxiv.org/abs/1409.7972">Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials</a>, arXiv preprint arXiv:1409.7972 [math.NT], 2014. See Table 2 p. 8.
%H A180274 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,10,0,0,0,0,0,-1).
%F A180274 a(n) = +10*a(n-6) -a(n-12). G.f. ( 70+106*x+158*x^2+182*x^3+274*x^4+430*x^5-50*x^6-38*x^7-34*x^8-34*x^9-38*x^10-50*x^11 ) / ( 1-10*x^6+x^12 ). - _Joerg Arndt_, Jan 17 2011
%F A180274 a(n) = sqrt( 24*(A094196(n))^2 +552*A094196(n)+4324) . - _R. J. Mathar_, Jan 20 2011
%p A180274 A094196 := proc(n) if n <= 12 then op(n,[1, 9, 20, 25, 44, 76, 121, 197, 304, 353, 540, 856]) ; else 10*procname(n-6)-procname(n-12)+92 ; end if ; end proc:
%p A180274 A180274 := proc(n) local a96 ; a96 := A094196(n) ; 24*a96^2+552*a96+4324 ; sqrt(%) ; end proc:
%p A180274 seq(A180274(n),n=1..30) ; # _R. J. Mathar_, Jan 20 2011
%t A180274 Select[Sqrt[#]&/@(Total[#]&/@Partition[Range[900000]^2, 24, 1]), IntegerQ] (* _Harvey P. Dale_, Jan 21 2011 *)
%t A180274 t={70, 106, 158, 182, 274, 430, 650, 1022, 1546, 1786, 2702, 4250}; Do[AppendTo[t, 10*t[[-6]] - t[[-12]]], {n, 13, 100}]; t
%o A180274 (PARI) { for(n=1,999999,t=((n+23)*(n+24)*(2*n+47)-n*(n-1)*(2*n-1))/6;if(issquare(t),print1(ceil(sqrt(t)),","))) }
%o A180274 (PARI) Vec(-2*x*(25*x^11+19*x^10+17*x^9+17*x^8+19*x^7+25*x^6-215*x^5-137*x^4-91*x^3-79*x^2-53*x-35) / (x^12-10*x^6+1) + O(x^100)) \\ _Colin Barker_, May 09 2015
%Y A180274 Cf. A094196.
%Y A180274 Cf. A001032 (24 is a term of that sequence).
%K A180274 nonn,easy
%O A180274 1,1
%A A180274 _Zhining Yang_, Jan 17 2011