This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180282 #16 Dec 13 2019 13:25:35 %S A180282 2,6,18,50,140,392,1106,3138,8952,25652,73788,212940,616226,1787606, %T A180282 5196626,15134930,44152808,128996852,377379368,1105350728,3241135526, %U A180282 9513228122,27948336380,82176836300,241813226150,712070156202,2098240353906,6186675630818 %N A180282 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to 2. %H A180282 Alois P. Heinz, <a href="/A180282/b180282.txt">Table of n, a(n) for n = 2..1665</a> (terms n=2..59 from R. H. Hardin) %F A180282 a(n) = Sum_{j=1..n} binomial(n,j)*binomial(n-j,j) = 2*A097861(n). %F A180282 a(n) = A002426(n) - 1. - _Jeppe Stig Nielsen_, Dec 13 2019 %p A180282 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A180282 `if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k)))) %p A180282 end: %p A180282 a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(2): %p A180282 seq(a(n), n=2..30); # _Alois P. Heinz_, Aug 17 2018 %o A180282 (PARI) for(n=2,29,print1(sum(j=1,n, binomial(n,j)*binomial(n-j,j)),", ")) \\ _Hugo Pfoertner_, Dec 13 2019 %Y A180282 Column 2 of A180281. %Y A180282 Cf. A097861, A002426. %K A180282 nonn %O A180282 2,1 %A A180282 _R. H. Hardin_, Aug 24 2010