This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180318 #11 Feb 16 2025 08:33:13 %S A180318 1,-6,0,-6,6,0,0,-12,0,-6,0,0,6,-12,0,0,6,0,0,-12,0,-12,0,0,0,-6,0,-6, %T A180318 12,0,0,-12,0,0,0,0,6,-12,0,-12,0,0,0,-12,0,0,0,0,6,-18,0,0,12,0,0,0, %U A180318 0,-12,0,0,0,-12,0,-12,6,0,0,-12,0,0,0,0,0,-12,0 %N A180318 Expansion of a(-q) in powers of q where a(q) is a cubic AGM function. %C A180318 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). %C A180318 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A180318 Antti Karttunen, <a href="/A180318/b180318.txt">Table of n, a(n) for n = 0..16384</a> %H A180318 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A180318 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A180318 Expansion of 2 * a(q^4) - a(q) in powers of q where a() is a cubic AGM theta function. %F A180318 Expansion of phi(-q) * phi(-q^3) - 4 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - _Michael Somos_, Sep 14 2015 %F A180318 Expansion of theta_3(-q) * theta_3(-q^3) - theta_2(q) * theta_2(q^3) in powers of q. %F A180318 G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = - (12)^(1/2) (t/i) f(t) where q = exp(2 Pi i t). %F A180318 a(n) = (-1)^n * A004016(n). %F A180318 G.f.: 1 + 6 * Sum_{k>0} (-x)^k/(1 + (-x)^k + x^(2*k)) = Sum_{j, k in Z} (-x)^(j*j + j*k + k*k). %F A180318 a(2*n) = -6 * A033762(n). a(4*n) = A004016(n). a(4*n + 1) = -6 * A112604(n). a(4*n + 2) = 0. a(4*n + 3) = -6 * A112605(n). - _Michael Somos_, Sep 14 2015 %e A180318 G.f. = 1 - 6*q - 6*q^3 + 6*q^4 - 12*q^7 - 6*q^9 + 6*q^12 - 12*q^13 + 6*q^16 + ... %t A180318 a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 6 Sum[ KroneckerSymbol[ -3, d], {d, Divisors[ n]}]]; (* _Michael Somos_, Sep 14 2015 *) %t A180318 a[ n_] := SeriesCoefficient[ (QPochhammer[ -q]^3 - 9 q QPochhammer[ -q^9]^3) / QPochhammer[ -q^3], {q, 0, n}]; (* _Michael Somos_, Sep 14 2015 *) %t A180318 a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3] - EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* _Michael Somos_, Sep 14 2015 *) %o A180318 (PARI) {a(n) = if( n<1, n==0, 6 * (-1)^n * sumdiv(n, d, kronecker(d, 3)))}; %o A180318 (Magma) A := Basis( ModularForms( Gamma1(12), 1), 75); A[1] - 6*A[2] - 6*A[4] + 6*A[5]; /* _Michael Somos_, Sep 14 2015 */ %Y A180318 Cf. A004016, A033762, A112604. A112605. %K A180318 sign %O A180318 0,2 %A A180318 _Michael Somos_, Aug 27 2010