cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180346 Primes that divide every circular permutation of the digits of at least one number of the form 123...(n-1)(n) (see A007908), where n is 3 digits long (that is, for some n in the range 99

This page as a plain text file.
%I A180346 #55 Oct 10 2023 05:32:54
%S A180346 3,7,11,13,17,19,23,29,31,37,41,43,53,61,67,73,83,97,101,107,127,163,
%T A180346 211,271,277,1009,18973
%N A180346 Primes that divide every circular permutation of the digits of at least one number of the form 123...(n-1)(n) (see A007908), where n is 3 digits long (that is, for some n in the range 99<n<1000).
%C A180346 Every a(i) divides at least 192 permutations of the digits of an element belonging to [A007908]. Skipping the trivial case a(1)=3, the most recurring elements are a(2)=7 and a(10)=37. The occurrences in our 1386450 terms set are the following [A181373]:
%C A180346 a(2) | 7  ⇒  n=100+14*v       (v=0,1,2,...,64)
%C A180346 a(3) | 11 ⇒  n=106+22*v       (v=0,1,2,...,40)
%C A180346 a(4) | 13 ⇒  n=120+26*v       (v=0,1,2,...,33)
%C A180346 a(5) | 17 ⇒  n=196+272*v      (v=0,1,2)
%C A180346 a(6) | 19 ⇒  n=102+114*v      (v=0,1,2,3,4,5,6,7)
%C A180346 a(7) | 23 ⇒  n=542
%C A180346 a(8) | 29 ⇒  n=400
%C A180346 a(9) | 31 ⇒  n=181+155*v      (v=0,1,2,3,4,5)
%C A180346 a(10)| 37 ⇒  n=123+d(v),
%C A180346 (where d(v)=0,12,25,12,25,12,25...  for v=0,1,2,3,...,47)
%C A180346 a(11) | 41 ⇒  n=216+205*v     (v=0,1,2,3)
%C A180346 a(12) | 43 ⇒  n=372+301*v     (v=0,1,2)
%C A180346 a(13) | 53 ⇒  n=127+689*v     (v=0,1)
%C A180346 a(14) | 61 ⇒  n=616
%C A180346 a(15) | 67 ⇒  n=399
%C A180346 a(16) | 73 ⇒  n=196+584*v     (v=0,1)
%C A180346 a(17) | 83 ⇒  n=118
%C A180346 a(18) | 97 ⇒  n=516
%C A180346 a(19) | 101 ⇒  n=416+404*v    (v=0,1)
%C A180346 a(20) | 107 ⇒  n=884
%C A180346 a(21) | 127 ⇒  n=106
%C A180346 a(22) | 163 ⇒  n=576
%C A180346 a(23) | 211 ⇒  n=306
%C A180346 a(24) | 271 ⇒  n=936
%C A180346 a(25) | 277 ⇒  n=174
%C A180346 a(26) | 1009 ⇒ n=960
%C A180346 a(27) | 18973 ⇒ n=903
%C A180346 N.B.
%C A180346 Every coefficient of "v" is a multiple of i. This is a general property of [A007908], valid for an arbitrary fixed digits interval of the parameter "n" (10^k-1<n<10^k).
%C A180346 a(28) >= prime(10^6) if it exists. - _Chai Wah Wu_, Nov 12 2015
%C A180346 Primes p such that p divides both A007908(m) and 10^A058183(m)-1 for some 99<m<1000. - _Chai Wah Wu_, Oct 07 2023
%C A180346 a(28) > prime(2.3316*10^9) if it exists. Conjecture: 18973 is the last term. - _Chai Wah Wu_, Oct 09 2023
%D A180346 Vassilev-Missana and K. Atanassov, “Some Smarandache problems”, Hexis, 2004.
%H A180346 Marco Ripà, <a href="http://www.rudimathematici.com/bookshelf/pdf/PrimiRipa.pdf">Strutture modulari associate al problema della primalità di alcune sequenze concatenate</a>, Rudimatematici, Bookshelf, October 2010. In Italian.
%H A180346 Marco Ripà, <a href="http://vixra.org/abs/1101.0092">On prime factors in old and new sequences of integers</a>, vixra, 2011.
%H A180346 Marco Ripa, <a href="http://www.nntdm.net/papers/nntdm-18/NNTDM-18-1-29-48.pdf">Patterns related to the Smarandache circular sequence primality problem</a>, Notes Numb. Th. Discr. Math., vol. 18(1) (2012), pp. 29-48.
%H A180346 F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>, Xiquan Publ., Phoenix-Chicago, 1993.
%F A180346 For n<10 the only a(i) is 3. If 9<n<100 an a(i) is 37 (the other one is a(1)=3), which divides all the circular permutations of Sm(21).
%o A180346 (PARI) isA180346(p)={ isprime(p) & p!=2 & p!=5 & for(n=100,999, my(S=eval(concat(vector(n,i,Str(i)))),L=#Str(S)-1); S%p & next; for(k=1,L, (S=[1,10^L]*divrem(S,10))%p & next(2));return(n)) }  /* returns the least corresponding n or 0 if not in this sequence */ \\ _M. F. Hasler_, Jan 23 2011
%o A180346 (Python)
%o A180346 from itertools import islice
%o A180346 from sympy import nextprime
%o A180346 def A180346_gen(startvalue=1): # generator of terms >= startvalue
%o A180346     p = max(startvalue-1,0)
%o A180346     while (p:=nextprime(p)):
%o A180346         c, q, a, b = 0, 1, 10, 10
%o A180346         for m in range(1,1000):
%o A180346             if m >= b:
%o A180346                 a = 10*a%p
%o A180346                 b *= 10
%o A180346             c = (c*a + m) % p
%o A180346             q = q*a % p
%o A180346             if m>99 and not (c or (q-1)%p):
%o A180346                 yield p
%o A180346                 break
%o A180346 A180346_list = list(islice(A180346_gen(),20)) # _Chai Wah Wu_, Oct 07 2023
%Y A180346 Cf. A007908, A058183, A181373.
%K A180346 base,fini,hard,nonn
%O A180346 1,1
%A A180346 _Marco Ripà_, Jan 22 2011