This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180346 #55 Oct 10 2023 05:32:54 %S A180346 3,7,11,13,17,19,23,29,31,37,41,43,53,61,67,73,83,97,101,107,127,163, %T A180346 211,271,277,1009,18973 %N A180346 Primes that divide every circular permutation of the digits of at least one number of the form 123...(n-1)(n) (see A007908), where n is 3 digits long (that is, for some n in the range 99<n<1000). %C A180346 Every a(i) divides at least 192 permutations of the digits of an element belonging to [A007908]. Skipping the trivial case a(1)=3, the most recurring elements are a(2)=7 and a(10)=37. The occurrences in our 1386450 terms set are the following [A181373]: %C A180346 a(2) | 7 ⇒ n=100+14*v (v=0,1,2,...,64) %C A180346 a(3) | 11 ⇒ n=106+22*v (v=0,1,2,...,40) %C A180346 a(4) | 13 ⇒ n=120+26*v (v=0,1,2,...,33) %C A180346 a(5) | 17 ⇒ n=196+272*v (v=0,1,2) %C A180346 a(6) | 19 ⇒ n=102+114*v (v=0,1,2,3,4,5,6,7) %C A180346 a(7) | 23 ⇒ n=542 %C A180346 a(8) | 29 ⇒ n=400 %C A180346 a(9) | 31 ⇒ n=181+155*v (v=0,1,2,3,4,5) %C A180346 a(10)| 37 ⇒ n=123+d(v), %C A180346 (where d(v)=0,12,25,12,25,12,25... for v=0,1,2,3,...,47) %C A180346 a(11) | 41 ⇒ n=216+205*v (v=0,1,2,3) %C A180346 a(12) | 43 ⇒ n=372+301*v (v=0,1,2) %C A180346 a(13) | 53 ⇒ n=127+689*v (v=0,1) %C A180346 a(14) | 61 ⇒ n=616 %C A180346 a(15) | 67 ⇒ n=399 %C A180346 a(16) | 73 ⇒ n=196+584*v (v=0,1) %C A180346 a(17) | 83 ⇒ n=118 %C A180346 a(18) | 97 ⇒ n=516 %C A180346 a(19) | 101 ⇒ n=416+404*v (v=0,1) %C A180346 a(20) | 107 ⇒ n=884 %C A180346 a(21) | 127 ⇒ n=106 %C A180346 a(22) | 163 ⇒ n=576 %C A180346 a(23) | 211 ⇒ n=306 %C A180346 a(24) | 271 ⇒ n=936 %C A180346 a(25) | 277 ⇒ n=174 %C A180346 a(26) | 1009 ⇒ n=960 %C A180346 a(27) | 18973 ⇒ n=903 %C A180346 N.B. %C A180346 Every coefficient of "v" is a multiple of i. This is a general property of [A007908], valid for an arbitrary fixed digits interval of the parameter "n" (10^k-1<n<10^k). %C A180346 a(28) >= prime(10^6) if it exists. - _Chai Wah Wu_, Nov 12 2015 %C A180346 Primes p such that p divides both A007908(m) and 10^A058183(m)-1 for some 99<m<1000. - _Chai Wah Wu_, Oct 07 2023 %C A180346 a(28) > prime(2.3316*10^9) if it exists. Conjecture: 18973 is the last term. - _Chai Wah Wu_, Oct 09 2023 %D A180346 Vassilev-Missana and K. Atanassov, “Some Smarandache problems”, Hexis, 2004. %H A180346 Marco Ripà, <a href="http://www.rudimathematici.com/bookshelf/pdf/PrimiRipa.pdf">Strutture modulari associate al problema della primalità di alcune sequenze concatenate</a>, Rudimatematici, Bookshelf, October 2010. In Italian. %H A180346 Marco Ripà, <a href="http://vixra.org/abs/1101.0092">On prime factors in old and new sequences of integers</a>, vixra, 2011. %H A180346 Marco Ripa, <a href="http://www.nntdm.net/papers/nntdm-18/NNTDM-18-1-29-48.pdf">Patterns related to the Smarandache circular sequence primality problem</a>, Notes Numb. Th. Discr. Math., vol. 18(1) (2012), pp. 29-48. %H A180346 F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>, Xiquan Publ., Phoenix-Chicago, 1993. %F A180346 For n<10 the only a(i) is 3. If 9<n<100 an a(i) is 37 (the other one is a(1)=3), which divides all the circular permutations of Sm(21). %o A180346 (PARI) isA180346(p)={ isprime(p) & p!=2 & p!=5 & for(n=100,999, my(S=eval(concat(vector(n,i,Str(i)))),L=#Str(S)-1); S%p & next; for(k=1,L, (S=[1,10^L]*divrem(S,10))%p & next(2));return(n)) } /* returns the least corresponding n or 0 if not in this sequence */ \\ _M. F. Hasler_, Jan 23 2011 %o A180346 (Python) %o A180346 from itertools import islice %o A180346 from sympy import nextprime %o A180346 def A180346_gen(startvalue=1): # generator of terms >= startvalue %o A180346 p = max(startvalue-1,0) %o A180346 while (p:=nextprime(p)): %o A180346 c, q, a, b = 0, 1, 10, 10 %o A180346 for m in range(1,1000): %o A180346 if m >= b: %o A180346 a = 10*a%p %o A180346 b *= 10 %o A180346 c = (c*a + m) % p %o A180346 q = q*a % p %o A180346 if m>99 and not (c or (q-1)%p): %o A180346 yield p %o A180346 break %o A180346 A180346_list = list(islice(A180346_gen(),20)) # _Chai Wah Wu_, Oct 07 2023 %Y A180346 Cf. A007908, A058183, A181373. %K A180346 base,fini,hard,nonn %O A180346 1,1 %A A180346 _Marco Ripà_, Jan 22 2011