A180364 a(n) = sum_{k=0..n} C(n,k)*C(n+k,k)*(2*k+1)^2, where C(m,k) denotes the binomial coefficient m!/(k!*(m-k)!).
1, 19, 205, 1839, 14961, 114483, 839917, 5975455, 41524897, 283272723, 1903686093, 12636115407, 83007985425, 540484102707, 3492471392493, 22418010385983, 143062290575937, 908253002030355, 5739641232682957, 36121371405797743, 226475167518421681
Offset: 0
Keywords
Examples
a(1) = 19 since sum_{k=0,1} C(1,k)*C(1+k,k)*(2k+1)^2 = 1 + 2*3^2 = 19.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..200
- Zhi-Wei Sun, Two kinds of numbers and their arithmetic properties, arXiv:1408.5381, 2014.
Programs
-
Mathematica
a[n_] := Sum[Binomial[n, k] Binomial[n + k, k] (2 k + 1)^2, {k, 0, n}] Table[a[n], {n, 0, 20}]
Formula
Recurrence (obtained via the Zeilberger algorithm):
-(n+1)*(2*n^2+10*n+11)*a(n) + (2*n+3)*(6*n^2+18*n-7)*a(n+1) - (n+2)*(2*n^2+2*n-1)*a(n+2) = 0.
a(n) ~ sqrt(8+6*sqrt(2)) * (3+2*sqrt(2))^n * n^(3/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Sep 02 2014
Comments