This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180401 #19 Jan 08 2025 10:39:13 %S A180401 1,0,1,0,1,1,0,4,4,1,0,36,33,10,1,0,576,480,148,20,1,0,14400,10960, %T A180401 3281,483,35,1,0,518400,362880,103824,15552,1288,56,1,0,25401600, %U A180401 16465680,4479336,663633,57916,2982,84,1,0,1625702400,981872640,253732096,36690816,3252624,181312,6216,120,1 %N A180401 Stirling-like sequence obtained from bipartite 0-1 tableaux. %C A180401 Gives the number of ways to construct pairs of permutations of an n-element set into k cycles such that the sum of the minima of the i-th cycle of the first permutation and the (k-i+1)-th cycle of the second permutation is n+1. %H A180401 K. J. M. Gonzales, <a href="https://arxiv.org/abs/1008.4192">Enumeration of Restricted Permutation Pairs and Partitions Pairs via 0-1 Tableaux</a>, arXiv:1008.4192 [math.CO], 2010-2014. %H A180401 A. de Medicis and P. Leroux, <a href="https://doi.org/10.4153/CJM-1995-027-x">Generalized Stirling Numbers, Convolution Formulae and p,q-Analogues</a>, Can. J. Math. 47 (1995), 474-499. %F A180401 G.f.: sum_{all r=>0} C(n,k) x^r = prod_{all v+w=n,0<=v,w<=n-1} (x+vw) %F A180401 Symm. f: C(n,k)=sum_{all 0 <=i_1<i_2<...<i_{n-k}<=n-1} %F A180401 (i_1*(n-1)-i_1)*(i_2*(n-1)-i_2)*...*(i_{n-k}*(n-1)-i_{n-k}) %F A180401 Recurrences: Let C(n,k;r)=sum_{all 0 <=i_1<i_2<...<i_{n-k}<=n-1} %F A180401 (i_1*(r+(n-1)-i_1))*(i_2*(r+(n-1)-i_2))*...*(i_{n-k}*(r+(n-1)-i_{n-k})). Then, %F A180401 C(n,k)=C(n-1,k-1,1)+(n)C(n-1,k,1) %e A180401 For n=6, C(6,0)=0, C(6,1)=0, C(6,2)=1, C(6,3)=32, C(6,4)=67, C(6,5)=20, C(6,6)=1 %o A180401 (R) ## Runs on R 2.7.1 %o A180401 ## Here, beta=r in recurrences %o A180401 cnk<-function(n,k,beta=0){ %o A180401 alpha=0 %o A180401 as<-function(j){j} %o A180401 bs<-function(j){j} %o A180401 form.seq<-function(n,fcn){ss<-NULL;for(i in 0:n){ss<-c(ss,fcn(i))};ss} %o A180401 seq.a<-form.seq(n+alpha+1,as) %o A180401 seq.b<-form.seq(n+beta+1,bs) %o A180401 v<-function(i){i} %o A180401 w<-function(i){i} %o A180401 if(n>k){ %o A180401 Atab<-combn(1:n-1,n-k) %o A180401 Btab<-n-1-Atab+beta %o A180401 Atab<-Atab+alpha %o A180401 px<-NULL %o A180401 for(i in 1:ncol(Atab)){ %o A180401 partial<-NULL %o A180401 for(j in 1:nrow(Atab)){ %o A180401 partial<-c(partial,(v(seq.a[Atab[j,i]+1])*w(seq.b[Btab[j,i]+1]))) %o A180401 } # for(j in 1:nrow(Atab)) %o A180401 px<-c(px,prod(partial)) %o A180401 }# for(i in 1:ncol(Atab)) %o A180401 } # if(n>k) %o A180401 if(n>k) x<-sum(px) %o A180401 if(n==k) x=1 %o A180401 if(n<k) x=0 %o A180401 x %o A180401 } %o A180401 # Example %o A180401 cnk(7,4) %Y A180401 Cf. A000292, A080251. %K A180401 nonn,tabl %O A180401 1,8 %A A180401 _Ken Joffaniel M Gonzales_, Sep 02 2010, Sep 27 2010