cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180450 Primes of the form floor( (k^sqrt(2) + k)/sqrt(2) ).

This page as a plain text file.
%I A180450 #19 Jul 03 2025 14:52:19
%S A180450 3,5,7,13,19,43,67,71,89,103,107,127,137,163,191,311,317,337,383,397,
%T A180450 431,547,569,577,599,607,653,661,677,701,709,733,757,823,857,977,1021,
%U A180450 1039,1129,1193,1249,1277,1381,1459,1699,1709,1823,1949,2099,2131,2153,2521,2647
%N A180450 Primes of the form floor( (k^sqrt(2) + k)/sqrt(2) ).
%C A180450 Intersection of A000040 with the sequence 1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 28, 32, 35, ... defined by the floor function.
%H A180450 Charles R Greathouse IV, <a href="/A180450/b180450.txt">Table of n, a(n) for n = 1..10000</a>
%p A180450 select(isprime,[seq(floor((n^sqrt(2)+n)/sqrt(2)),n=1..350)]); # _Muniru A Asiru_, Sep 29 2018
%t A180450 Select[With[{b = Sqrt[2]}, Table[Floor[(n^b + n)/b], {n, 500}]], PrimeQ] (* _G. C. Greubel_, Sep 29 2018 *)
%o A180450 (PARI) for(n=1, 148438, if(ispseudoprime(t=floor((n^sqrt(2)+n)/sqrt(2))), print1(t", "))); v \\ _Charles R Greathouse IV_, Feb 18 2011
%K A180450 easy,nonn
%O A180450 1,1
%A A180450 _William A. Tedeschi_, Sep 07 2010
%E A180450 Formula replaced by a comment - _R. J. Mathar_, Sep 09 2010