A180459 Sampling n numbers between 1 and a(n)-1, you are guaranteed to always find two subsets whose sums are equal.
3, 5, 8, 13, 21, 36, 61, 107, 191, 347, 636, 1177, 2192, 4104, 7718, 14572, 27603, 52439, 99875, 190661, 364733, 699063, 1342190, 2581123, 4971040, 9586994, 18512804, 35791409, 69273681, 134217744, 260301065, 505290287, 981706828
Offset: 3
Keywords
Examples
Example for n=6 : in a 6-elements sample, there are S = 2^6 - 2 = 62 nontrivial subsets; the maximum possible "subsum" is P = (m) + (m-1) + ... + (m-5) = 6m - 6*5/2 = 6m - 15. With m = a(6) = 13, P = 63 : this is the lowest value of m for which the argument S>P is not working.
Programs
-
Mathematica
f[n_] := Ceiling[(2^n + n (n - 1)/2 - 2)/n]; Array[f, 30, 3] (* Robert G. Wilson v, Sep 07 2010 *)
Formula
For n>=3, a(n)= [ 2^n - 2 + n(n-1)/2 ] / n rounded up.
Extensions
More terms from Robert G. Wilson v, Sep 07 2010
Comments