This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180499 #26 Aug 13 2024 02:24:46 %S A180499 2,10,30,68,130,222,350,521,739,1011,1343,1741,2211,2759,3392,4114, %T A180499 4932,5852,6880,8022,9284,10673,12193,13852,15654,17606,19714,21985, %U A180499 24423,27035,29827,32805,35975,39343 %N A180499 n^3 + n-th cubefree number. %C A180499 First differs from n^3 + n (A034262) at n=8 because 8 is the first positive integer which is not cubefree. %C A180499 What cubes appear in this sequence? %C A180499 No cubes appear in this sequence: the n-th cubefree number is asymptotically zeta(3)*n, putting members of this sequence strictly between n^3 and (n+1)^3. (Lacking effective error bounds this actually only shows that there are finitely many.) - _Charles R Greathouse IV_, Jan 21 2011 %H A180499 Charles R Greathouse IV, <a href="/A180499/b180499.txt">Table of n, a(n) for n = 1..10000</a> %F A180499 a(n) = n^3 + A004709(n) = A000578(n) + A004709(n). %e A180499 a(8) = 8^3 + 8th number that is not divisible by any cube > 1 = 8^3 + 9 = 521. %t A180499 #[[1]]+#[[2]]^3&/@Module[{cf=Select[Range[50],Max[FactorInteger[#][[All,2]]] < 3&]},Thread[{cf,Range[Length[cf]]}]] (* _Harvey P. Dale_, Jun 28 2020 *) %o A180499 (Python) %o A180499 from sympy import mobius, integer_nthroot %o A180499 def A180499(n): %o A180499 def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) %o A180499 m, k = n, f(n) %o A180499 while m != k: %o A180499 m, k = k, f(k) %o A180499 return n**3+m # _Chai Wah Wu_, Aug 12 2024 %Y A180499 Cf. A000578, A004709, A034262, A161203. %K A180499 nonn,easy %O A180499 1,1 %A A180499 _Jonathan Vos Post_, Jan 20 2011