cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180512 Triangle of the number of alternating sign matrices according to the number of -1's.

This page as a plain text file.
%I A180512 #36 Jul 22 2025 08:27:52
%S A180512 1,2,6,1,24,16,2,120,200,94,14,1,720,2400,2684,1284,310,36,2,5040,
%T A180512 29400,63308,66158,38390,13037,2660,328,26,1
%N A180512 Triangle of the number of alternating sign matrices according to the number of -1's.
%C A180512 The first column is the factorial, A000142.
%C A180512 The second column forms coefficients of Laguerre polynomials, A001810.
%C A180512 From _Arvind Ayyer_, Mar 15 2018: (Start)
%C A180512 Consider the row generating function A_n(x) = sum_k a(n,k) x^k. Then
%C A180512 A_n(0) = n!, A000142.
%C A180512 A_n(1) = number of ASM's, A005130.
%C A180512 A_n(2) = number of domino tilings of the Aztec diamond, A006125.
%C A180512 A_n(3) = 3-enumeration of n X n alternating-sign matrices, A059477. (End)
%H A180512 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/St000065/">The number of entries equal to negative one in the alternating sign matrix</a>
%H A180512 Florent Le Gac, <a href="http://www.theses.fr/2011BOR14287">Quelques problèmes d’énumération autour des matrices à signes alternants</a>, thesis, LaBRI Bordeaux, 2011.
%H A180512 Wikipedia, <a href="http://en.wikipedia.org/wiki/Alternating_sign_matrix">Alternating Sign Matrix</a>
%e A180512 In triangular format, the numbers of ASMs is as follows:
%e A180512 n=1:1
%e A180512 n=2:2
%e A180512 n=3:6,1
%e A180512 n=4:24,16,2
%e A180512 n=5:120,200,94,14,1
%e A180512 n=6:720,2400,2684,1284,310,36,2
%e A180512 n=7:5040,29400,63308,66158,38390,13037,2660,328,26,1
%Y A180512 Row sums are A005130
%Y A180512 Cf. A000142, A006125, A059477, A001810.
%K A180512 nonn,hard,tabf
%O A180512 1,2
%A A180512 _Arvind Ayyer_, Jan 20 2011
%E A180512 T(7, 7) corrected by _Arvind Ayyer_, Feb 12 2018