cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180567 The Wiener index of the Fibonacci tree of order n.

This page as a plain text file.
%I A180567 #10 Jan 05 2025 19:51:39
%S A180567 0,0,4,18,96,374,1380,4696,15336,48318,148448,446890,1324104,3872656,
%T A180567 11206764,32143818,91509120,258855006,728211180,2038815272,5684262480,
%U A180567 15789141750,43712852544,120663667538,332191809936,912339490464
%N A180567 The Wiener index of the Fibonacci tree of order n.
%C A180567 A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
%C A180567 The Wiener index of a connected graph is the sum of the distances between all unordered pairs of nodes in the graph.
%D A180567 D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
%H A180567 Y. Horibe, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/20-2/horibe.pdf">An entropy view of Fibonacci trees</a>, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
%H A180567 B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:5&lt;959::AID-QUA2&gt;3.0.CO;2-W">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60, 1996, 959-969.
%F A180567 a(n) = Sum(k*A180566(n,k), k>=0).
%F A180567 The Wiener polynomial w(n,t) of the Fibonacci tree of order n satisfies the recurrence relation w(n,t)=w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2,t) + t^2*r(n-1,t)*r(n-2,t), w(0,t)=w(1,t)=0, where r(n,t) is the generating polynomial of the nodes of the Fibonacci tree of order n with respect to the level of the nodes (for example, 1+2t for the tree /\; see A178522). The Wiener index is the derivative of w(n,t) with respect to t, evaluated at t=1 (see the Maple program).
%F A180567 Empirical G.f.: -2*x^2*(x^7-2*x^6-6*x^5+6*x^4+6*x^3-8*x^2+3*x-2)/((x+1)^2*(x^2-3*x+1)^2*(x^2+x-1)^2). [_Colin Barker_, Nov 17 2012]
%e A180567 a(2)=4 because in the tree /\ we have 3 distances: 1, 1, and 2.
%p A180567 G := (1-t*z+t*z^2)/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 38)): for n from 0 to 35 do r[n] := sort(coeff(Gser, z, n)) end do: w[0] := 0: w[1] := 0: for n from 2 to 30 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: seq(subs(t = 1, diff(w[n], t)), n = 0 .. 27);
%Y A180567 Cf. A180566
%K A180567 nonn
%O A180567 0,3
%A A180567 _Emeric Deutsch_, Sep 14 2010