This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180569 #18 Feb 16 2025 08:33:13 %S A180569 4,25,72,154,280,459,700,1012,1404,1885,2464,3150,3952,4879,5940,7144, %T A180569 8500,10017,11704,13570,15624,17875,20332,23004,25900,29029,32400, %U A180569 36022,39904,44055,48484,53200,58212,63529,69160,75114,81400,88027,95004 %N A180569 The Wiener index of the P_3 X P_n grid, where P_m is the path graph on m nodes. The Wiener index of a connected graph is the sum of distances between all unordered pairs of nodes in the graph. %H A180569 Michael De Vlieger, <a href="/A180569/b180569.txt">Table of n, a(n) for n = 1..10000</a> %H A180569 B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:5<959::AID-QUA2>3.0.CO;2-W">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60, 1996, 959-969. %H A180569 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>. %F A180569 a(n) = (1/2)*n*(n+3)*(3n-1). %F A180569 G.f.: z*(4+9*z-4*z^2)/(1-z)^4. %F A180569 a(n) = Sum_{k=1..n+1} k*A180568(n,k). - corrected by _Andrew Howroyd_, May 27 2017 %e A180569 a(1)=4 because in P_3 X P_1 = P_3 there are 2 pairs of nodes at distance 1 and one pair at distance 2. %p A180569 seq((1/2)*n*(n+3)*(3*n-1), n = 1 .. 40); %t A180569 Table[n (n + 3) (3 n - 1)/2, {n, 39}] (* or *) %t A180569 Rest@ CoefficientList[Series[x (4 + 9 x - 4 x^2)/(1 - x)^4, {x, 0, 39}], x] (* _Michael De Vlieger_, May 28 2017 *) %Y A180569 Row 3 of A143368. %Y A180569 Cf. A180568. %K A180569 nonn %O A180569 1,1 %A A180569 _Emeric Deutsch_, Sep 28 2010