This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180570 #5 Dec 16 2016 03:04:17 %S A180570 7,12,9,10,18,18,9,13,24,27,18,9,16,30,36,27,18,9,19,36,45,36,27,18,9, %T A180570 22,42,54,45,36,27,18,9,25,48,63,54,45,36,27,18,9,28,54,72,63,54,45, %U A180570 36,27,18,9,31,60,81,72,63,54,45,36,27,18,9,34,66,90,81,72,63,54,45,36,27 %N A180570 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the graph \|/_\/_\/_..._\/_\|/ having n nodes on the horizontal path. The entries in row n are the coefficients of the Wiener polynomial of the graph. %C A180570 Row n has n+1 entries. %C A180570 Sum of entries in row n = (2 + 9n + 9n^2)/2 =A060544(n+1). %C A180570 Sum_{k>=0} k*T(n,k) = A180571(n) (the Wiener indices of the graphs). %D A180570 I. Gutman, SL Lee, CH Chu. YLLuo, Indian J. Chem., 33A, 603. %D A180570 I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, On the multiplicative Wiener index and its possible chemical applications, Monatshefte fur Chemie, 131, 421-427 (see Eq. between (10) and (11); replace n with n+2). %F A180570 The generating polynomial of row n is t*(9t^(n+2) - 3nt^3 - 8t^2 - 2t + 1 + 3n)/(1-t)^2. %F A180570 The bivariate g.f. is G = tz^2*(7 + 12t + 9t^2 - 4z - 13tz + 4tz^2 + 6t^2*z^2 - 12t^2*z)/((1-z)^2*(1-tz)). %e A180570 T(2,3)=9 because in the graph \|/_\|/ there are 9 unordered pairs of vertices at distance 3. %e A180570 Triangle starts: %e A180570 7, 12, 9; %e A180570 10, 18, 18, 9; %e A180570 13, 24, 27, 18, 9; %e A180570 16, 30, 36, 27, 18, 9; %p A180570 for n from 2 to 11 do P[n] := sort(expand(simplify(t*(9*t^(n+2)-3*n*t^3-8*t^2-2*t+1+3*n)/(1-t)^2))) end do: for n from 2 to 11 do seq(coeff(P[n], t, j), j = 1 .. n+1) end do; # yields sequence in triangular form %Y A180570 Cf. A060544, A180571. %K A180570 nonn,tabf %O A180570 2,1 %A A180570 _Emeric Deutsch_, Sep 16 2010