cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180571 The Wiener index of the graph \|/\/\/...\/_\|/ having n nodes on the horizontal path.

This page as a plain text file.
%I A180571 #18 Nov 05 2021 08:48:03
%S A180571 58,136,259,436,676,988,1381,1864,2446,3136,3943,4876,5944,7156,8521,
%T A180571 10048,11746,13624,15691,17956,20428,23116,26029,29176,32566,36208,
%U A180571 40111,44284,48736,53476,58513,63856,69514,75496,81811,88468,95476,102844,110581,118696
%N A180571 The Wiener index of the graph \|/_\/_\/_..._\/_\|/ having n nodes on the horizontal path.
%C A180571 The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
%H A180571 I. Gutman, S.-L. Lee, C.-H. Chu, and Y.-L. Luo, <a href="http://nopr.niscair.res.in/handle/123456789/40955">Chemical applications of the Laplacian spectrum of molecular graphs: Studies of the Wiener number</a>, Indian J. Chem., 33A(07) (1994), 603-608.
%H A180571 I. Gutman, W. Linert, I. Lukovits, and Z. Tomović, <a href="https://doi.org/10.1007/PL00010312">On the multiplicative Wiener index and its possible chemical applications</a>, Monatshefte für Chemie, 131 (2000), 421-427 (see the equation between (10) and (11); replace n with n+2).
%H A180571 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A180571 a(n) = (2 + 9*n + 18*n^2 + 3*n^3)/2.
%F A180571 a(n) = Sum_{k >= 0} k*A180570(n,k).
%F A180571 G.f.: z^2*(58 - 96*z + 63*z^2 - 16*z^3)/(1 - z)^4.
%p A180571 seq((2+9*n+18*n^2+3*n^3)*1/2, n = 2 .. 40);
%Y A180571 Cf. A180570.
%K A180571 nonn,easy
%O A180571 2,1
%A A180571 _Emeric Deutsch_, Sep 16 2010