A180573
Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the sun graph on 2n nodes. The sun graph on 2n nodes is obtained by attaching n pendant edges to the cycle graph on n nodes.
Original entry on oeis.org
6, 6, 3, 8, 10, 8, 2, 10, 15, 15, 5, 12, 18, 21, 12, 3, 14, 21, 28, 21, 7, 16, 24, 32, 28, 16, 4, 18, 27, 36, 36, 27, 9, 20, 30, 40, 40, 35, 20, 5, 22, 33, 44, 44, 44, 33, 11, 24, 36, 48, 48, 48, 42, 24, 6, 26, 39, 52, 52, 52, 52, 39, 13, 28, 42, 56, 56, 56, 56, 49, 28, 7, 30, 45, 60
Offset: 3
Triangle starts:
6,6,3;
8,10,8,2;
10,15,15,5;
12,18,21,12,3;
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- D. Stevanovic, Hosoya polynomial of composite graphs, Discrete Math., 235 (2001), 237-244.
-
P := proc (n) if `mod`(n, 2) = 0 then sort(expand(n*t*(1+t)^2*(sum(t^j, j = 0 .. (1/2)*n-1))+n*t-(1/2)*n*t^((1/2)*n)*(1+t)^2)) else sort(expand(n*t*(1+(1+t)^2*(sum(t^j, j = 0 .. (1/2)*n-3/2))))) end if end proc; for n from 3 to 15 do P(n) end do: for n from 3 to 15 do seq(coeff(P(n), t, i), i = 1 .. 2+floor((1/2)*n)) end do; # yields sequence in trianguklar form
A192027
Square array read by antidiagonals: W(n,m) (n >= 1, m >= 1) is the Wiener index of the graph G(n,m) obtained from the n-circuit graph by adjoining m pendant edges at each node of the circuit.
Original entry on oeis.org
1, 10, 4, 27, 29, 9, 60, 75, 58, 16, 105, 160, 147, 97, 25, 174, 275, 308, 243, 146, 36, 259, 447, 525, 504, 363, 205, 49, 376, 658, 846, 855, 748, 507, 274, 64, 513, 944, 1239, 1371, 1265, 1040, 675, 353, 81, 690, 1278, 1768, 2002, 2022, 1755, 1380, 867, 442, 100
Offset: 1
a(3,1)=27 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB, BC, CA, AA', BB', CC'} we have 6 pairs of vertices at distance 1 (the edges), 6 pairs at distance 2 (A'B, A'C, B'A, B'C, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 6*1 + 6*2 + 3*3 = 27.
The square array starts:
1, 4, 9, 16, 25, 36, 49, ...;
10, 29, 58, 97, 146, 205, 274, ...;
27, 75, 147, 243, 363, 507, 675, ...;
60, 160, 308, 504, 748, 1040, 1380, ...;
-
W := proc (n, m) if `mod`(n, 2) = 0 then (1/2)*n*((1/4)*n^2+2*m^2*n+(1/4)*m^2*n^2+2*m*n+(1/2)*m*n^2-2*m) else (1/8)*(n^2-1+m^2*n^2+8*m^2*n-m^2+2*m*n^2+8*m*n-10*m)*n end if end proc: for n to 10 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields the antidiagonals in triangular form
W := proc (n, m) if `mod`(n, 2) = 0 then (1/2)*n*((1/4)*n^2+2*m^2*n+(1/4)*m^2*n^2+2*m*n+(1/2)*m*n^2-2*m) else (1/8)*(n^2-1+m^2*n^2+8*m^2*n-m^2+2*m*n^2+8*m*n-10*m)*n end if end proc: for n to 10 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 1,2,...,10.
P := proc (n, m) if `mod`(n, 2) = 0 then sort(expand(n*(m*t+(1/2)*m*(m-1)*t^2)+n*(sum(t^j, j = 1 .. (1/2)*n-1))*(1+m*t)^2+(1/2)*n*t^((1/2)*n)*(1+m*t)^2)) else sort(expand(n*(m*t+(1/2)*m*(m-1)*t^2)+n*(sum(t^j, j = 1 .. (1/2)*n-1/2))*(1+m*t)^2)) end if end proc: P(4,9);
A192028
Square array read by antidiagonals: W(n,m) (n >= 1, m >= 1) is the Wiener index of the graph G(n,m) obtained from the n-circuit graph by joining at each of its nodes a path with m nodes (n >= 1, m >= 1; if m=1, then the n-circuit is not modified).
Original entry on oeis.org
0, 1, 1, 3, 10, 4, 8, 27, 35, 10, 15, 60, 93, 84, 20, 27, 105, 196, 222, 165, 35, 42, 174, 335, 456, 435, 286, 56, 64, 259, 537, 770, 880, 753, 455, 84, 90, 376, 784, 1212, 1475, 1508, 1197, 680, 120, 125, 513, 1112, 1750, 2295, 2515, 2380, 1788, 969, 165
Offset: 1
a(3,1)=27 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB, BC, CA, AA', BB', CC'} we have 6 pairs of vertices at distance 1 (the edges), 6 pairs at distance 2 (A'B, A'C, B'A, B'C, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 6*1 + 6*2 + 3*3 = 27.
The square array starts:
0, 1, 4, 10, 20, 35, 56, 84, ...;
1, 10, 35, 84, 165, 286, 455, 680, ...;
3, 27, 93, 222, 435, 753, 1197, 1788, ...;
8, 60, 196, 456, 880, 1508, 2380, 3536, ...;
-
W := proc (n, m) if `mod`(n, 2) = 0 then (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+12*m-4) else (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+9*m-4) end if end proc: for n to 10 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields the antidiagonals in triangular form
W := proc (n, m) if `mod`(n, 2) = 0 then (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+12*m-4) else (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+9*m-4) end if end proc: for n to 10 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 1,2,...,10.
P := proc (n, m) if `mod`(n, 2) = 0 then sort(expand(simplify(n*t*(t^m-m*t+m-1)/(1-t)^2+(n*(sum(t^j, j = 1 .. (1/2)*n-1))+(1/2)*n*t^((1/2)*n))*(1-t^m)^2/(1-t)^2))) else sort(expand(simplify(n*t*(t^m-m*t+m-1)/(1-t)^2+n*(sum(t^j, j = 1 .. (1/2)*n-1/2))*(1-t^m)^2/(1-t)^2))) end if end proc: P(3, 4);
Showing 1-3 of 3 results.
Comments