cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A180573 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the sun graph on 2n nodes. The sun graph on 2n nodes is obtained by attaching n pendant edges to the cycle graph on n nodes.

Original entry on oeis.org

6, 6, 3, 8, 10, 8, 2, 10, 15, 15, 5, 12, 18, 21, 12, 3, 14, 21, 28, 21, 7, 16, 24, 32, 28, 16, 4, 18, 27, 36, 36, 27, 9, 20, 30, 40, 40, 35, 20, 5, 22, 33, 44, 44, 44, 33, 11, 24, 36, 48, 48, 48, 42, 24, 6, 26, 39, 52, 52, 52, 52, 39, 13, 28, 42, 56, 56, 56, 56, 49, 28, 7, 30, 45, 60
Offset: 3

Views

Author

Emeric Deutsch, Sep 19 2010

Keywords

Comments

Number of entries in row n = 2 + floor(n/2).
Sum of entries in row n = n(2n-1)=A000384(n).
Sum(k*T(n,k),k>=1) = A180574(n).

Examples

			Triangle starts:
6,6,3;
8,10,8,2;
10,15,15,5;
12,18,21,12,3;
		

Crossrefs

Programs

  • Maple
    P := proc (n) if `mod`(n, 2) = 0 then sort(expand(n*t*(1+t)^2*(sum(t^j, j = 0 .. (1/2)*n-1))+n*t-(1/2)*n*t^((1/2)*n)*(1+t)^2)) else sort(expand(n*t*(1+(1+t)^2*(sum(t^j, j = 0 .. (1/2)*n-3/2))))) end if end proc; for n from 3 to 15 do P(n) end do: for n from 3 to 15 do seq(coeff(P(n), t, i), i = 1 .. 2+floor((1/2)*n)) end do; # yields sequence in trianguklar form

Formula

The generating polynomial of row 2n is 2nt-nt^n*(1+t)^2+2nt(1+t)^2*sum(t^j, j=0..n-1); the generating polynomial of row 2n+1 is (2n+1)t[1+(1+t)^2*sum(t^j,j=0..n-1)]; these are the Wiener polynomials of the corresponding graphs.

A192027 Square array read by antidiagonals: W(n,m) (n >= 1, m >= 1) is the Wiener index of the graph G(n,m) obtained from the n-circuit graph by adjoining m pendant edges at each node of the circuit.

Original entry on oeis.org

1, 10, 4, 27, 29, 9, 60, 75, 58, 16, 105, 160, 147, 97, 25, 174, 275, 308, 243, 146, 36, 259, 447, 525, 504, 363, 205, 49, 376, 658, 846, 855, 748, 507, 274, 64, 513, 944, 1239, 1371, 1265, 1040, 675, 353, 81, 690, 1278, 1768, 2002, 2022, 1755, 1380, 867, 442, 100
Offset: 1

Views

Author

Emeric Deutsch, Jun 26 2011

Keywords

Comments

W(1,m) = m^2 = A000290(m).
W(2,m) = A079273(m+1).
W(n,1) = A180574(n).

Examples

			a(3,1)=27 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB, BC, CA, AA', BB', CC'} we have 6 pairs of vertices at distance 1 (the edges), 6 pairs at distance 2 (A'B, A'C, B'A, B'C, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 6*1 + 6*2 + 3*3 = 27.
The square array starts:
   1,   4,   9,  16,  25,   36,   49, ...;
  10,  29,  58,  97, 146,  205,  274, ...;
  27,  75, 147, 243, 363,  507,  675, ...;
  60, 160, 308, 504, 748, 1040, 1380, ...;
		

Crossrefs

Programs

  • Maple
    W := proc (n, m) if `mod`(n, 2) = 0 then (1/2)*n*((1/4)*n^2+2*m^2*n+(1/4)*m^2*n^2+2*m*n+(1/2)*m*n^2-2*m) else (1/8)*(n^2-1+m^2*n^2+8*m^2*n-m^2+2*m*n^2+8*m*n-10*m)*n end if end proc: for n to 10 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields the antidiagonals in triangular form
    W := proc (n, m) if `mod`(n, 2) = 0 then (1/2)*n*((1/4)*n^2+2*m^2*n+(1/4)*m^2*n^2+2*m*n+(1/2)*m*n^2-2*m) else (1/8)*(n^2-1+m^2*n^2+8*m^2*n-m^2+2*m*n^2+8*m*n-10*m)*n end if end proc: for n to 10 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 1,2,...,10.
    P := proc (n, m) if `mod`(n, 2) = 0 then sort(expand(n*(m*t+(1/2)*m*(m-1)*t^2)+n*(sum(t^j, j = 1 .. (1/2)*n-1))*(1+m*t)^2+(1/2)*n*t^((1/2)*n)*(1+m*t)^2)) else sort(expand(n*(m*t+(1/2)*m*(m-1)*t^2)+n*(sum(t^j, j = 1 .. (1/2)*n-1/2))*(1+m*t)^2)) end if end proc: P(4,9);

Formula

If n even, then: W(n,m) = n*(n^2/4 + 2*m^2*n + m^2*n^2/4 + 2*m*n + m*n^2/2 - 2*m)/2;
if n odd, then: W(n,m) = n*(n^2 - 1 + m^2*n^2 + 8*m^2*n - m^2 + 2*m*n^2 + 8*m*n - 10*m)/8.
The Wiener polynomial P(n,m;t) of the graph G(n,m) is given in the 3rd Maple program. It gives, for example, P(4,9) = 162*t^4 + 360*t^3 + 218*t^2 + 40*t. Its derivative, evaluated at t=1, yields the corresponding Wiener index W(4,9)=4184.

A192028 Square array read by antidiagonals: W(n,m) (n >= 1, m >= 1) is the Wiener index of the graph G(n,m) obtained from the n-circuit graph by joining at each of its nodes a path with m nodes (n >= 1, m >= 1; if m=1, then the n-circuit is not modified).

Original entry on oeis.org

0, 1, 1, 3, 10, 4, 8, 27, 35, 10, 15, 60, 93, 84, 20, 27, 105, 196, 222, 165, 35, 42, 174, 335, 456, 435, 286, 56, 64, 259, 537, 770, 880, 753, 455, 84, 90, 376, 784, 1212, 1475, 1508, 1197, 680, 120, 125, 513, 1112, 1750, 2295, 2515, 2380, 1788, 969, 165
Offset: 1

Views

Author

Emeric Deutsch, Jun 27 2011

Keywords

Comments

W(1,m) = A000292(m-1).
W(2,m) = A000447(m) = A000292(2m-2).
W(n,1) = A034828(n).
W(n,2) = A180574(n) (n >= 3).

Examples

			a(3,1)=27 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB, BC, CA, AA', BB', CC'} we have 6 pairs of vertices at distance 1 (the edges), 6 pairs at distance 2 (A'B, A'C, B'A, B'C, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 6*1 + 6*2 + 3*3 = 27.
The square array starts:
  0,  1,   4,  10,  20,   35,   56,   84, ...;
  1, 10,  35,  84, 165,  286,  455,  680, ...;
  3, 27,  93, 222, 435,  753, 1197, 1788, ...;
  8, 60, 196, 456, 880, 1508, 2380, 3536, ...;
		

Crossrefs

Programs

  • Maple
    W := proc (n, m) if `mod`(n, 2) = 0 then (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+12*m-4) else (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+9*m-4) end if end proc: for n to 10 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields the antidiagonals in triangular form
    W := proc (n, m) if `mod`(n, 2) = 0 then (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+12*m-4) else (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+9*m-4) end if end proc: for n to 10 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 1,2,...,10.
    P := proc (n, m) if `mod`(n, 2) = 0 then sort(expand(simplify(n*t*(t^m-m*t+m-1)/(1-t)^2+(n*(sum(t^j, j = 1 .. (1/2)*n-1))+(1/2)*n*t^((1/2)*n))*(1-t^m)^2/(1-t)^2))) else sort(expand(simplify(n*t*(t^m-m*t+m-1)/(1-t)^2+n*(sum(t^j, j = 1 .. (1/2)*n-1/2))*(1-t^m)^2/(1-t)^2))) end if end proc: P(3, 4);

Formula

W(n,m) = (1/24)*n*m*(3*m*n^2 + 12*n*m^2 - 8*m^2 - 12*n*m + 12*m - 4) if n is even;
W(n,m) = (1/24)*n*m*(3*m*n^2 + 12*n*m^2 - 8*m^2 - 12*n*m + 9*m - 4) if n is odd.
The Wiener polynomial P(n,m;t) of the graph G(n,m) is given in the 3rd Maple program. It gives, for example, P(3,4) = 12*t + 12*t^2 + 12*t^3 + 12*t^4 + 9*t^5 + 6*t^6 + 3*t^7. Its derivative, evaluated at t=1, yields the corresponding Wiener index W(3,4)=222.
Showing 1-3 of 3 results.