cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180577 The Wiener index of the windmill graph D(6,n). The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs).

This page as a plain text file.
%I A180577 #20 Apr 03 2025 16:03:38
%S A180577 15,80,195,360,575,840,1155,1520,1935,2400,2915,3480,4095,4760,5475,
%T A180577 6240,7055,7920,8835,9800,10815,11880,12995,14160,15375,16640,17955,
%U A180577 19320,20735,22200,23715,25280,26895,28560,30275,32040,33855,35720,37635,39600,41615,43680,45795
%N A180577 The Wiener index of the windmill graph D(6,n). The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs).
%C A180577 The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
%C A180577 The Wiener polynomial of D(m,n) is (1/2)n(m-1)t[(m-1)(n-1)t+m].
%C A180577 The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1].
%C A180577 For the Wiener indices of D(3,n), D(4,n), and D(5,n) see A033991, A152743, and A028994, respectively.
%H A180577 B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://users.math.msu.edu/users/sagan/Papers/Old/wpg-pub.pdf">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., Vol. 60, 1996, pp. 959-969.
%H A180577 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WindmillGraph.html">Windmill Graph</a>.
%H A180577 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A180577 a(n) = 5*n*(5*n-2).
%F A180577 G.f.: -5*x*(7*x+3)/(x-1)^3. - _Colin Barker_, Oct 30 2012
%F A180577 From _Elmo R. Oliveira_, Apr 03 2025: (Start)
%F A180577 E.g.f.: 5*exp(x)*x*(3 + 5*x).
%F A180577 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
%p A180577 seq(5*n*(-2+5*n), n = 1 .. 40);
%o A180577 (PARI) a(n)=5*n*(5*n-2) \\ _Charles R Greathouse IV_, Jun 17 2017
%Y A180577 Cf. A028994, A033991, A152743.
%K A180577 nonn,easy
%O A180577 1,1
%A A180577 _Emeric Deutsch_, Sep 21 2010
%E A180577 More terms from _Elmo R. Oliveira_, Apr 03 2025