cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180617 Sum of divisors of the product of two consecutive primes.

This page as a plain text file.
%I A180617 #27 Sep 08 2022 08:45:54
%S A180617 12,24,48,96,168,252,360,480,720,960,1216,1596,1848,2112,2592,3240,
%T A180617 3720,4216,4896,5328,5920,6720,7560,8820,9996,10608,11232,11880,12540,
%U A180617 14592,16896,18216,19320,21000,22800,24016,25912,27552,29232,31320,32760,34944,37248,38412
%N A180617 Sum of divisors of the product of two consecutive primes.
%F A180617 a(n) = A000203(A006094(n)). - _Omar E. Pol_, Dec 08 2019
%F A180617 a(n) = A006094(n) + A001043(n) + 1. - _Metin Sariyar_, Dec 08 2019
%F A180617 a(n) = A126199(n) + 1 (after above formula). - _Omar E. Pol_, Dec 08 2019
%e A180617 a(1) = sigma(2*3) = 12, a(2) = sigma(3*5) = 24.
%t A180617 DivisorSigma[1,#]&/@(Times@@@Partition[Prime[Range[50]],2,1]) (* _Harvey P. Dale_, Apr 04 2015 *)
%t A180617 Table[Prime[n]*Prime[n+1]+Prime[n]+Prime[n+1]+1,{n,1,30}] (* _Metin Sariyar_, Dec 08 2019 *)
%o A180617 (PARI) for (n=1,10, i=prod(x=n,n+1,prime(x)); p=sigma(i); print1(p, ", "); )
%o A180617 (PARI) a(n)=my(p=prime(n)); (p+1)*(nextprime(p+1)+1) \\ _Charles R Greathouse IV_, Feb 16 2015
%o A180617 (Magma) [(1+NthPrime(n))*(1+NthPrime(n+1)): n in [1..50]]; // _Vincenzo Librandi_, Feb 16 2015
%Y A180617 A distant relative of A054640.
%Y A180617 Cf. A000203, A001043, A006094, A126199.
%K A180617 nonn
%O A180617 1,1
%A A180617 _Thomas Kellar_, Sep 12 2010
%E A180617 More terms from _Vincenzo Librandi_, Feb 16 2015
%E A180617 Name simplified by _Omar E. Pol_, Dec 08 2019