This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180617 #27 Sep 08 2022 08:45:54 %S A180617 12,24,48,96,168,252,360,480,720,960,1216,1596,1848,2112,2592,3240, %T A180617 3720,4216,4896,5328,5920,6720,7560,8820,9996,10608,11232,11880,12540, %U A180617 14592,16896,18216,19320,21000,22800,24016,25912,27552,29232,31320,32760,34944,37248,38412 %N A180617 Sum of divisors of the product of two consecutive primes. %F A180617 a(n) = A000203(A006094(n)). - _Omar E. Pol_, Dec 08 2019 %F A180617 a(n) = A006094(n) + A001043(n) + 1. - _Metin Sariyar_, Dec 08 2019 %F A180617 a(n) = A126199(n) + 1 (after above formula). - _Omar E. Pol_, Dec 08 2019 %e A180617 a(1) = sigma(2*3) = 12, a(2) = sigma(3*5) = 24. %t A180617 DivisorSigma[1,#]&/@(Times@@@Partition[Prime[Range[50]],2,1]) (* _Harvey P. Dale_, Apr 04 2015 *) %t A180617 Table[Prime[n]*Prime[n+1]+Prime[n]+Prime[n+1]+1,{n,1,30}] (* _Metin Sariyar_, Dec 08 2019 *) %o A180617 (PARI) for (n=1,10, i=prod(x=n,n+1,prime(x)); p=sigma(i); print1(p, ", "); ) %o A180617 (PARI) a(n)=my(p=prime(n)); (p+1)*(nextprime(p+1)+1) \\ _Charles R Greathouse IV_, Feb 16 2015 %o A180617 (Magma) [(1+NthPrime(n))*(1+NthPrime(n+1)): n in [1..50]]; // _Vincenzo Librandi_, Feb 16 2015 %Y A180617 A distant relative of A054640. %Y A180617 Cf. A000203, A001043, A006094, A126199. %K A180617 nonn %O A180617 1,1 %A A180617 _Thomas Kellar_, Sep 12 2010 %E A180617 More terms from _Vincenzo Librandi_, Feb 16 2015 %E A180617 Name simplified by _Omar E. Pol_, Dec 08 2019