A180682 a(n) is the largest path count within the (right-aligned Ferrers plots of the) partitions of n.
1, 1, 1, 2, 2, 3, 3, 5, 6, 7, 9, 10, 14, 16, 19, 23, 28, 32, 42, 47, 56, 66, 76, 90, 107, 132, 146, 174, 202, 230, 268, 314, 359, 429, 471, 561, 645, 735, 847, 979, 1094, 1247, 1430, 1593, 1859, 2123, 2420, 2768, 3172, 3503, 4019, 4481, 5096, 5691, 6384, 7168, 8151
Offset: 1
Keywords
Examples
a(13)=14 because the partition of 13 with largest path count is 4432, producing {1,1,1,1}, {1,2,3,4}, {2,5,9}, {5,14} with closing value 14.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..87
Programs
-
Mathematica
pathcount[p_] := Block[{ferr = (0*Range[#1] &) /@ p}, Last[Fold[Rest[FoldList[Plus, 0, Drop[#1, Length[#1] - Length[#2]] + #2]] &, 1 + First[ferr], Rest[ferr]]]]; f[n_] := Block[{k = mx = 1}, While[k < n + 1, m = Max[ pathcount /@ IntegerPartitions[n, {k}]]; If[m > mx, mx = m]; k++]; mx]; k = 1; lst = {}; While[k < 58, a = f@ k; Print[{k, a}]; AppendTo[lst, a]; k++ ]; lst
Extensions
a(37) onwards from Robert G. Wilson v, Sep 19 2010