This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180749 #13 Jan 22 2018 11:00:02 %S A180749 1,2,5,26,231,2844,43854,803578,16960731,404010692,10705681566, %T A180749 312189558548,9933838621998,342530711507568,12724338381577576, %U A180749 506700249728722586,21535304484380633171,973107015782753948460 %N A180749 G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (n+1)^n*x^n. %H A180749 Paul D. Hanna, <a href="/A180749/b180749.txt">Table of n, a(n) for n = 0..300</a> %F A180749 G.f. satisfies: [x^n] A(x)^(n+1) = (n+1)^(n+1) for n>=0. %F A180749 G.f. satisfies: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)^n*x^n. %e A180749 G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 231*x^4 + 2844*x^5 +... %e A180749 G.f. satisfies A(x) = G(x/A(x)) where A(x*G(x)) = G(x) begins: %e A180749 G(x) = 1 + 2*x + 3^2*x^2 + 4^3*x^3 + 5^4*x^4 + 6^5*x^5 + 7^6*x^6 +... %e A180749 so that: %e A180749 A(x) = 1 + 2*x/A(x) + 3^2*x^2/A(x)^2 + 4^3*x^3/A(x)^3 + 5^4*x^4/A(x)^4 +... %e A180749 The coefficients in A(x)^n for n=1..8 begin: %e A180749 A^1: [(1), 2, 5, 26, 231, 2844, 43854, 803578, ...]; %e A180749 A^2: [1, (4), 14, 72, 591, 6872, 102070, 1823024, ...]; %e A180749 A^3: [1, 6, (27), 146, 1140, 12546, 179105, 3112332, ...]; %e A180749 A^4: [1, 8, 44, (256),1954, 20488, 280848, 4740128, ...]; %e A180749 A^5: [1, 10, 65, 410,(3125),31512, 415020, 6793750, ...]; %e A180749 A^6: [1, 12, 90, 616, 4761,(46656), 591638, 9384288, ...]; %e A180749 A^7: [1, 14, 119, 882, 6986, 67214, (823543), 12652712, ...]; %e A180749 A^8: [1, 16, 152, 1216, 9940, 94768, 1126992, (16777216), ...]; ... %e A180749 where the coefficient of x^n in A(x)^(n+1) equals (n+1)^(n+1). %o A180749 (PARI) {a(n)=polcoeff(x/serreverse(x*sum(m=0,n+1,(m+1)^m*x^m)+x^2*O(x^n)),n)} %o A180749 for(n=0, 20, print1(a(n), ", ")) %Y A180749 Cf. A182957, A180747, A242749. %K A180749 nonn %O A180749 0,2 %A A180749 _Paul D. Hanna_, Jan 22 2011