cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180780 Number of distinct solutions of sum{i=1..9}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 0, 22, 499, 9730, 136491, 1430727, 11783122, 78770456, 443607864, 2151608155, 9218591346, 35373572400, 123749340262, 398005623516, 1192411118090, 3344070542568, 8869510553867, 22304900540593, 53635016669434
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 9 of A180782

Examples

			Solutions for sum of products of 9 1..2 pairs = 0 (mod 3) are
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2)
(1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2)
(1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)
(1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2)
(1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2)
(1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)