cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180788 Number of distinct solutions of sum{i=1..6}(x(2i-1)*x(2i)) = 1 (mod n), with x() only in 1..n-1.

This page as a plain text file.
%I A180788 #5 Jun 02 2025 03:05:37
%S A180788 0,0,9,112,1004,6404,32890,137528,499641,1579113,4551268,11861187,
%T A180788 29034355,65777365,142805210,291148080,576393509,1082580072,
%U A180788 1993354411,3505999065,6088877416,10148269838,16796812567,26776385524,42563703291
%N A180788 Number of distinct solutions of sum{i=1..6}(x(2i-1)*x(2i)) = 1 (mod n), with x() only in 1..n-1.
%C A180788 Column 6 of A180793
%H A180788 R. H. Hardin, <a href="/A180788/b180788.txt">Table of n, a(n) for n=1..183</a>
%e A180788 Solutions for sum of products of 6 1..2 pairs = 1 (mod 3) are
%e A180788 (1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2) (1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 2*2)
%e A180788 (1*1 + 1*1 + 1*1 + 1*2 + 2*2 + 2*2) (1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2)
%e A180788 (1*1 + 1*1 + 1*2 + 2*2 + 2*2 + 2*2) (1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2)
%e A180788 (1*1 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2) (1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)
%e A180788 (1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
%K A180788 nonn
%O A180788 1,3
%A A180788 _R. H. Hardin_ Sep 20 2010