cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180795 Number of distinct solutions of Sum_{i=1..3}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

This page as a plain text file.
%I A180795 #7 Sep 07 2023 20:11:47
%S A180795 1,6,21,68,142,355,589,1250,1946,3372,4591,8432,10054,16027,21564,
%T A180795 31228,35957,56543,61282,92952,107265,139286,154287,234348,238495,
%U A180795 313496,362400,469556,476974,690961,660676,896194,964301,1162662,1252820
%N A180795 Number of distinct solutions of Sum_{i=1..3}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.
%H A180795 R. H. Hardin, <a href="/A180795/b180795.txt">Table of n, a(n) for n=1..444</a>
%e A180795 Solutions for sum of products of 3 0..2 pairs = 0 (mod 3) are:
%e A180795 (0*0 + 0*0 + 0*0) (0*0 + 0*0 + 0*1) (0*0 + 0*0 + 0*2) (0*0 + 0*1 + 0*1)
%e A180795 (0*0 + 0*1 + 0*2) (0*0 + 0*2 + 0*2) (0*0 + 1*1 + 1*2) (0*0 + 1*2 + 2*2)
%e A180795 (0*1 + 0*1 + 0*1) (0*1 + 0*1 + 0*2) (0*1 + 0*2 + 0*2) (0*1 + 1*1 + 1*2)
%e A180795 (0*1 + 1*2 + 2*2) (0*2 + 0*2 + 0*2) (0*2 + 1*1 + 1*2) (0*2 + 1*2 + 2*2)
%e A180795 (1*1 + 1*1 + 1*1) (1*1 + 1*1 + 2*2) (1*1 + 2*2 + 2*2) (1*2 + 1*2 + 1*2)
%e A180795 (2*2 + 2*2 + 2*2)
%Y A180795 Column 3 of A180803.
%K A180795 nonn
%O A180795 1,2
%A A180795 _R. H. Hardin_, suggested by _Max Alekseyev_ in the Sequence Fans Mailing List, Sep 20 2010