cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180800 Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

This page as a plain text file.
%I A180800 #6 Jun 02 2025 03:06:38
%S A180800 1,25,435,6302,63988,526152,3362296,18294610,83656074,340334735,
%T A180800 1222011919,4033921144,12105114076,34125015671,89380952993,
%U A180800 223056939011,524533055884,1188931232028,2564070855994,5372508105333,10797948228909
%N A180800 Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.
%C A180800 Column 8 of A180803
%H A180800 R. H. Hardin, <a href="/A180800/b180800.txt">Table of n, a(n) for n=1..183</a>
%e A180800 Solutions for sum of products of 8 0..1 pairs = 0 (mod 2) are
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0)
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
%e A180800 (0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
%e A180800 (0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
%e A180800 (0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
%e A180800 (0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
%e A180800 (0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
%e A180800 (0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
%e A180800 (0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
%e A180800 (1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
%K A180800 nonn
%O A180800 1,2
%A A180800 _R. H. Hardin_, suggested by _Max Alekseyev_ in the Sequence Fans Mailing List, Sep 20 2010