A180855 Square array read by antidiagonals: T(m,n) is the Wiener index of the banana tree B(n,k) (n>=1, k>=2). B(n,k) is the graph obtained by taking n copies of a star graph on k nodes and connecting with an edge one leaf of each of these n stars with an additional node.
4, 20, 10, 48, 56, 18, 88, 138, 108, 28, 140, 256, 270, 176, 40, 204, 410, 504, 444, 260, 54, 280, 600, 810, 832, 660, 360, 70, 368, 826, 1188, 1340, 1240, 918, 476, 88, 468, 1088, 1638, 1968, 2000, 1728, 1218, 608, 108, 580, 1386, 2160, 2716, 2940, 2790, 2296, 1560, 756, 130
Offset: 1
Examples
T(1,2)=4 because the banana tree B(1,2) reduces to a path on 3 nodes, where the distances are 1, 1, and 2. Square array T(n,k) begins: 4,10,18,28,40,54,70; 20,56,108,176,260,360,476; 48,138,270,444,660,918,1218; 88,256,504,832,1240,1728,2296;
Links
- B. E. Sagan, Y-N. Yeh, and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- Eric Weisstein's World of Mathematics, Banana Tree.
Programs
-
Maple
T := proc (n, k) options operator, arrow: n*(k-1)*(3*n*k-2*k+2) end proc: for n to 10 do seq(T(n+2-j, j), j = 2 .. n+1) end do; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := n*(k - 1)*(3*n*k - 2*k + 2); Table[T[n - k + 2, k], {n, 1, 10}, {k, 2, n + 1}] // Flatten (* Jean-François Alcover, Aug 26 2024 *)
Comments