cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180921 a(n) is the square root of the sum of the cubes of the b(n) consecutive integers starting from b(n), where b(n) = A180920.

This page as a plain text file.
%I A180921 #36 Apr 27 2025 10:42:22
%S A180921 1,2079,7876385,30254180671,116236127290689,446579144331338591,
%T A180921 1715756954644453458529,6591937773063166150358655,
%U A180921 25326223208345427203876398721,97303342974524967600723097592479,373839418381901692962342398114034081
%N A180921 a(n) is the square root of the sum of the cubes of the b(n) consecutive integers starting from b(n), where b(n) = A180920.
%C A180921 Colin Barker's linear recurrence conjecture confirmed, see A180920. - _Ray Chandler_, Jan 12 2024
%H A180921 Colin Barker, <a href="/A180921/b180921.txt">Table of n, a(n) for n = 1..279</a>
%H A180921 Vladimir Pletser, <a href="http://arxiv.org/abs/1501.06098">General solutions of sums of consecutive cubed integers equal to squared integers</a>, arXiv:1501.06098 [math.NT], 2015.
%H A180921 R. J. Stroeker, <a href="http://www.numdam.org/item?id=CM_1995__97_1-2_295_0">On the sum of consecutive cubes being a perfect square</a>, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
%H A180921 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3904,-238206,3904,-1).
%F A180921 a(n) = b(n)*(31*(a(n-1)/b(n-1)) + 8*sqrt(15*((a(n-1)/b(n-1))^2) + 1)) where b(n) = A180920(n).
%F A180921 From _Colin Barker_, Feb 19 2015: (Start)
%F A180921 a(n) = 3904*a(n-1) - 238206*a(n-2) + 3904*a(n-3) - a(4).
%F A180921 G.f.: x*(x+1)*(x^2-1826*x+1) / ((x^2-3842*x+1)*(x^2-62*x+1)). (End)
%F A180921 a(n) = Sqrt(A240137(A180920(n))). - _Ray Chandler_, Jan 12 2024
%e A180921 a(3) = 2017*(31*(2079/33) + 8*sqrt(15*((2079/33)^2) + 1)).
%t A180921 LinearRecurrence[{3904,-238206,3904,-1},{1,2079,7876385,30254180671},20] (* _Harvey P. Dale_, Apr 27 2025 *)
%o A180921 (PARI)
%o A180921 default(realprecision, 1000);
%o A180921 b=vector(20, n, if(n==1, t=1, t=round(31*t-14+8*((3*t-1)*(5*t-3))^(1/2))));
%o A180921 vector(#b, n, if(n==1, t=1, t=round(b[n]*(31*(t/b[n-1])+8*(15*((t/b[n-1])^2)+1)^(1/2))))) \\ _Colin Barker_, Feb 19 2015
%Y A180921 Cf. A180920, A240137.
%K A180921 easy,nonn
%O A180921 1,2
%A A180921 _Vladimir Pletser_, Sep 24 2010
%E A180921 Name clarified by _Jon E. Schoenfield_, Mar 11 2022