A181019 T(n,k) = maximum number of 1s in an n X k binary matrix with no three 1s adjacent in a line along a row, column or diagonally.
1, 2, 2, 2, 4, 2, 3, 4, 4, 3, 4, 6, 6, 6, 4, 4, 8, 7, 7, 8, 4, 5, 8, 9, 9, 9, 8, 5, 6, 10, 10, 12, 12, 10, 10, 6, 6, 12, 12, 13, 16, 13, 12, 12, 6, 7, 12, 14, 16, 17, 17, 16, 14, 12, 7, 8, 14, 15, 18, 20, 20, 20, 18, 15, 14, 8, 8, 16, 17, 20, 24, 23, 23, 24, 20, 17, 16, 8, 9, 16, 19, 22, 25, 26
Offset: 1
Examples
The table starts: 1..2..2..3..4..4..5..6..6..7..8..8..9.10.10.11.12.12.13..14..14 2..4..4..6..8..8.10.12.12.14.16.16.18.20.20.22.24.24.26..28..28 2..4..6..7..9.10.12.14.15.17.19.20.22.24.25.27.29.30.32..34..35 3..6..7..9.12.13.16.18.20.22.24.26.28.30.32.34.37.39.41..43..45 4..8..9.12.16.17.20.24.25.28.32.33.36.40.41.44.48.49.52..56..57 4..8.10.13.17.20.23.26.29.32.36.38.41.45.48.51.54.57.60..63..66 5.10.12.16.20.23.26.30.33.37.41.44.48.51.55.58.62.65.69..72..76 6.12.14.18.24.26.30.36.38.42.48.50.54.60.62.66.72.74.78..84..86 6.12.15.20.25.29.33.38.42.47.52.56.60.66.70.74.79.83.88..92..96 7.14.17.22.28.32.37.42.47.52.58.62.67.72.77.82.87.92.98.102.107 The unique maximal solution for 5X5 is the following: 1..1..0..1..1 1..1..0..1..1 0..0..0..0..0 1..1..0..1..1 1..1..0..1..1
Links
- R. H. Hardin and Peter J. Taylor, Table of n, a(n) for n = 1..496 (first 220 terms from R. H. Hardin)
Crossrefs
Cf. A181018.
Comments