This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181070 #10 Apr 05 2021 20:40:13 %S A181070 1,1,2,4,8,23,88,379,3044,32116,379279,9160509,237458908,7651718328, %T A181070 495105710770,29747390685988,2718143583980173,436044028162542425, %U A181070 61494671526637653928,16346049663440380567782,6106008029903796482509688 %N A181070 Expansion of G.f.: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^(k+1)*x^k)*x^n/n ). %C A181070 Conjecture: this sequence consists entirely of integers. %C A181070 Note that the following g.f. does NOT yield an integer series: %C A181070 exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^k * x^k) * x^n/n ). %H A181070 G. C. Greubel, <a href="/A181070/b181070.txt">Table of n, a(n) for n = 0..120</a> %e A181070 G.f. A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 23*x^5 + 88*x^6 + ... %e A181070 The logarithm of g.f. A(x) begins: %e A181070 log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 66*x^5/5 + 357*x^6/6 + 1891*x^7/7 + ... + A181071(n)*x^n/n + ... %e A181070 and equals the series: %e A181070 log(A(x)) = (1 + x)*x + (1 + 2^2*x + x^2)*x^2/2 %e A181070 + (1 + 3^2*x + 3^3*x^2 + x^3)*x^3/3 %e A181070 + (1 + 4^2*x + 6^3*x^2 + 4^4*x^3 + x^4)*x^4/4 %e A181070 + (1 + 5^2*x + 10^3*x^2 + 10^4*x^3 + 5^5*x^4 + x^5)*x^5/5 %e A181070 + (1 + 6^2*x + 15^3*x^2 + 20^4*x^3 + 15^5*x^4 + 6^6*x^5 + x^6)*x^6/6 + ... %t A181070 With[{m=30}, CoefficientList[Series[Exp[Sum[Sum[Binomial[n, k]^(k+1)*x^(n+k)/n, {k, 0, m+2}], {n, m+1}]], {x,0,m}], x]] (* _G. C. Greubel_, Apr 05 2021 *) %o A181070 (PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m,k)^(k+1)*x^k)*x^m/m)+x*O(x^n)), n)} %o A181070 (Magma) %o A181070 m:=30; %o A181070 R<x>:=PowerSeriesRing(Integers(), m); %o A181070 Coefficients(R!( Exp( (&+[ (&+[ Binomial(n,k)^(k+1)*x^(n+k)/n : k in [0..m+2]]): n in [1..m+1]]) ) )); // _G. C. Greubel_, Apr 05 2021 %o A181070 (Sage) %o A181070 m=30; %o A181070 def A181070_list(prec): %o A181070 P.<x> = PowerSeriesRing(ZZ, prec) %o A181070 return P( exp( sum( sum( binomial(n,k)^(k+1)*x^(n+k)/n for k in (0..m+2) ) for n in (1..m+1)) ) ).list() %o A181070 A181070_list(m) # _G. C. Greubel_, Apr 05 2021 %Y A181070 Cf. A181071(log), variants: A181072, A181074, A181080. %K A181070 nonn %O A181070 0,3 %A A181070 _Paul D. Hanna_, Oct 02 2010