This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181080 #5 Apr 05 2021 20:57:19 %S A181080 1,1,2,4,14,83,774,10641,255918,14643874,1752083557,320079087261, %T A181080 79294841767020,27407454296637142,16895839815165609994, %U A181080 26064121763003372842186,82824096391548076720149081 %N A181080 Expansion of g.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^(n-k+1) * x^k] * x^n/n ). %C A181080 Conjecture: this sequence consists entirely of integers. %C A181080 Note that the following g.f. does NOT yield an integer series: %C A181080 exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^(n-k) * x^k] * x^n/n ). %H A181080 G. C. Greubel, <a href="/A181080/b181080.txt">Table of n, a(n) for n = 0..90</a> %e A181080 G.f. A(x) = 1 + x + 2*x^2 + 4*x^3 + 14*x^4 + 83*x^5 + 774*x^6 +... %e A181080 The logarithm of g.f. A(x) begins: %e A181080 log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 39*x^4/4 + 336*x^5/5 + 4077*x^6/6 + ... + A181081(n)*x^n/n + ... %e A181080 and equals the series: %e A181080 log(A(x)) = (1 + x)*x + (1 + 2^2*x + x^2)*x^2/2 %e A181080 + (1 + 3^3*x + 3^2*x^2 + x^3)*x^3/3 %e A181080 + (1 + 4^4*x + 6^3*x^2 + 4^2*x^3 + x^4)*x^4/4 %e A181080 + (1 + 5^5*x + 10^4*x^2 + 10^3*x^3 + 5^2*x^4 + x^5)*x^5/5 %e A181080 + (1 + 6^6*x + 15^5*x^2 + 20^4*x^3 + 15^3*x^4 + 6^2*x^5 + x^6)*x^6/6 + ... %t A181080 With[{m=20}, CoefficientList[Series[Exp[Sum[Sum[Binomial[n, k]^(n-k+1)*x^(n+k)/n, {k,0,n}], {n,m+1}]], {x,0,m}], x]] (* _G. C. Greubel_, Apr 05 2021 *) %o A181080 (PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^(m-k+1)*x^k)*x^m/m)+x*O(x^n)),n)} %o A181080 (Magma) %o A181080 m:=20; %o A181080 R<x>:=PowerSeriesRing(Integers(), m); %o A181080 Coefficients(R!( Exp( (&+[ (&+[ Binomial(n,k)^(n-k+1)*x^(n+k)/n : k in [0..n]]): n in [1..m+1]]) ) )); // _G. C. Greubel_, Apr 05 2021 %o A181080 (Sage) %o A181080 m=20; %o A181080 def A181066_list(prec): %o A181080 P.<x> = PowerSeriesRing(ZZ, prec) %o A181080 return P( exp( sum( sum( binomial(n,k)^(n-k+1)*x^(n+k)/n for k in (0..n) ) for n in (1..m+1)) ) ).list() %o A181080 A181066_list(m) # _G. C. Greubel_, Apr 05 2021 %Y A181080 Variants: A166894, A181070, A181082. %Y A181080 Cf. A181081 (log). %K A181080 nonn %O A181080 0,3 %A A181080 _Paul D. Hanna_, Oct 02 2010