This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181087 #30 Mar 08 2020 00:05:28 %S A181087 1,2,1,1,3,1,2,4,1,3,1,1,1,5,2,2,1,4,1,1,2,6,2,3,1,5,1,1,3,7,2,4,1,2, %T A181087 2,1,6,1,1,1,1,3,3,1,1,4,8,2,5,1,2,3,1,7,1,1,1,2,3,4,1,1,5,9,2,6,1,2, %U A181087 4,1,8,1,1,1,3,3,5,2,2,2,1,1,6,10,1,3,3,2,7,1,1,2,2,4,4,1,2,5,1,9,1,1,1,4,3,6,2,2,3,1,1,7,11,1,3,4,2,8,1,1 %N A181087 Partitions of n in the order of increasing smallest numbers of prime signatures. %C A181087 The parts of each partition are listed in increasing order. %H A181087 Alois P. Heinz, <a href="/A181087/b181087.txt">Table of n, a(n) for n = 1..18132</a> %e A181087 Smallest number with prime signature [1,1,1] is 2^1*3^1*5^1 = 30, the smallest number for [4] is 2^4 = 16, and thus [4] < [1,1,1] in this order. %e A181087 First partitions in the order of increasing smallest numbers of prime signatures are: [1], [2], [1,1], [3], [1,2], [4], [1,3], [1,1,1], [5], [2,2], [1,4], [1,1,2], [6], [2,3], [1,5], [1,1,3], [7], [2,4], ... %e A181087 Smallest numbers with these prime signatures are: 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, ... A025487 %t A181087 DeleteDuplicates[Map[Sort[Map[Last, FactorInteger[#]]] &, Range[1000]]] // Grid (* _Geoffrey Critzer_, Nov 27 2015 *) %o A181087 (Sage) %o A181087 def A181087_build(w): %o A181087 seen = set() %o A181087 a = [] %o A181087 for n in PositiveIntegers(): %o A181087 psig = tuple(sorted(m for p,m in factor(n))) %o A181087 if psig not in seen: %o A181087 a.extend(psig) %o A181087 seen.add(psig) %o A181087 if len(a) >= w: return a # _D. S. McNeil_, Jan 23 2011 %Y A181087 Cf. A036036, A036037, A080576, A025487, A095904. %K A181087 nonn,look %O A181087 1,2 %A A181087 _Alois P. Heinz_, Jan 23 2011