This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181089 #8 Apr 05 2021 00:07:16 %S A181089 2,2,2,2,0,2,8,-12,-12,8,28,0,-96,0,28,32,120,-160,-160,120,32,-56,0, %T A181089 240,0,240,0,-56,128,-1680,-1344,3360,3360,-1344,-1680,128,1936,0, %U A181089 -17024,0,26880,0,-17024,0,1936,512,30240,-9216,-80640,48384,48384,-80640,-9216,30240,512 %N A181089 Triangle T(n, k) = A060821(n,k) + A060821(n,n-k), read by rows. %H A181089 G. C. Greubel, <a href="/A181089/b181089.txt">Rows n = 0..50 of the triangle, flattened</a> %F A181089 T(n, k) = coefficients [x^k] of the polynomial HermiteH(n,x) + x^n*HermiteH(n,1/x). %F A181089 T(n, k) = A060821(n,k) + A060821(n,n-k). %F A181089 Sum_{k=0..n} T(n, k) = 2*A062267(n). %e A181089 Triangle begins as: %e A181089 2; %e A181089 2, 2; %e A181089 2, 0, 2; %e A181089 8, -12, -12, 8; %e A181089 28, 0, -96, 0, 28; %e A181089 32, 120, -160, -160, 120, 32; %e A181089 -56, 0, 240, 0, 240, 0, -56; %e A181089 128, -1680, -1344, 3360, 3360, -1344, -1680, 128; %e A181089 1936, 0, -17024, 0, 26880, 0, -17024, 0, 1936; %e A181089 512, 30240, -9216, -80640, 48384, 48384, -80640, -9216, 30240, 512; %t A181089 (* First program *) %t A181089 p[x_, n_] = HermiteH[n, x] + ExpandAll[x^n*HermiteH[n, 1/x]]; %t A181089 Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 15}]] (* edited by _G. C. Greubel_, Apr 04 2021 *) %t A181089 (* Second program *) %t A181089 A060821[n_, k_]:= If[EvenQ[n-k], (-1)^(Floor[(n-k)/2])*2^k*n!/(k!*(Floor[(n - k)/2]!)), 0]; %t A181089 T[n_, k_]:= A060821[n, k] +A060821[n, n-k]; %t A181089 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Apr 04 2021 *) %o A181089 (Sage) %o A181089 def A060821(n,k): return (-1)^((n-k)//2)*2^k*factorial(n)/(factorial(k)*factorial( (n-k)//2)) if (n-k)%2==0 else 0 %o A181089 def T(n,k): return A060821(n, k) + A060821(n, n-k) %o A181089 flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Apr 04 2021 %Y A181089 Cf. A060821, A062267. %K A181089 sign,tabl %O A181089 0,1 %A A181089 _Roger L. Bagula_, Oct 02 2010