A181118 Sequencing of all rational numbers p/q > 0 as ordered pairs (p,q). The rational (p,q) occurs as the n-th ordered pair where n=(p+q-1)*(p+q-2)/2+q.
1, 1, 2, 1, 1, 2, 3, 1, 2, 2, 1, 3, 4, 1, 3, 2, 2, 3, 1, 4, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 7, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 8, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 6, 4, 7, 3
Offset: 1
Examples
Triangle begins: 1,1 : 1/1; 2,1,1,2 : 2/1, 1/2; 3,1,2,2,1,3 : 3/1, 2/2, 1/3; 4,1,3,2,2,3,1,4 : 4/1, 3/2, 2/3, 1/4; 5,1,4,2,3,3,2,4,1,5 : 5/1, 4/2, 3/3, 2/4, 1/5; ...
Links
- G. H. Hardy, A Course of Pure Mathematics (1921), p. 1.
Programs
-
Mathematica
Flatten[Table [{n+1-r, r}, {n, 9}, {r, n}]] u[x_] := Floor[3/2 + Sqrt[2*x]]; v[x_] := Floor[1/2 + Sqrt[2*x]]; n[x_] := 1 - x + u[x]*(u[x] - 1)/2; k[x_] := x - v[x]*(v[x] - 1)/2; Flatten[Table[{n[m], k[m]}, {m, 45}]] (* L. Edson Jeffery, Jun 20 2015 *)
-
PARI
for(n=1,9,for(r=1,n,print1(n+1-r", "r", "))) \\ Charles R Greathouse IV, Dec 20 2011
Formula
Triangle format R(n,m) of ordered pairs (R(n,2r-1), R(n,2r)) with R(n,2r-1)=n+1-r and R(n,2r)=r and generating the rational (n+1-r)/r.
Extensions
Typo corrected and tabl changed to tabf by Frank M Jackson, Oct 07 2010
Comments