This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181136 #13 Dec 25 2017 04:07:08 %S A181136 1,1,2,10,92,1264,26138,753322,28451978,1385043022,84971475986, %T A181136 6393154081582,580295829204452,62818032904371952,8005929383232314294, %U A181136 1187186361565313907994,203034917331580351972520 %N A181136 G.f.: A(x) = Sum_{n>=0} x^n/[Sum_{k=0..n} C(n,k)^3*(-x)^k]. %C A181136 Compare the g.f. of this sequence to the identity: %C A181136 (1-x)/(1-2*x) = Sum_{n>=0} x^n/[Sum_{k=0..n} C(n,k)*(-x)^k]. %H A181136 Robert Israel, <a href="/A181136/b181136.txt">Table of n, a(n) for n = 0..248</a> %F A181136 G.f.: Sum_{n>=0} x^n/hypergeom([-n,-n,-n],[1,1],x). - _Robert Israel_, Dec 24 2017 %e A181136 G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 92*x^4 + 1264*x^5 +... %e A181136 which equals the series: %e A181136 A(x) = 1 + x/(1-x) + x^2/(1-2^3*x+x^2) + x^3/(1-3^3*x+3^3*x^2-x^3) + x^4/(1-4^3*x+6^3*x^2-4^3*x^3+x^4) + x^5/(1-5^3*x+10^3*x^2-10^3*x^3+5^3*x^4-x^5) +... %p A181136 G:= add(x^n/hypergeom([-n,-n,-n],[1,1],x),n=0..50): %p A181136 S:= series(G501,x,51): %p A181136 seq(coeff(S,x,n),n=0..50); # _Robert Israel_, Dec 24 2017 %o A181136 (PARI) {a(n)=polcoeff(sum(m=0, n, x^m/sum(k=0, m, binomial(m, k)^3*(-x)^k+x*O(x^n))), n)} %Y A181136 Cf. A178324. %K A181136 nonn %O A181136 0,3 %A A181136 _Paul D. Hanna_, Jan 25 2011